Citation: Xiao-Cheng Liu, Qing-Wu Yin, Zhi-Cheng Hu, Zhen-Feng Wang, Fei Huang, Yong Cao. Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 18-27. doi: 10.1007/s10118-019-2188-1 shu

Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells



  • Author Bio: † These authors contributed equally to this work
    † These authors contributed equally to this work




  • Corresponding author: Fei Huang, msfhuang@scut.edu.cn
  • Received Date: 26 July 2018
    Revised Date: 4 September 2018
    Accepted Date: 11 September 2018
    Available Online: 10 October 2018

  • We present here a series of perylene diimide (PDI) based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells (all-PSCs). By copolymerizing PDI monomers with 1,4-diethynylbenzene (para-linkage) and 1,3-diethynylbenzene (meta-linkage), isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained. It was found that para-linked conjugated polymer (PA) showed better solubility, stronger π-π stacking, more favorable blend morphology, and better photovoltaic performance than those of meta-linked conjugated polymers (PM) did. Device based on PTB7-Th:PA (PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl}) showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA (3.29% versus 0.92%). Moreover, the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy. By copolymerizing a small amount of meta-linkages into PA, the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density (Jsc) and fill factor (FF), resulting in an improved power conversion efficiency (PCE) of 4.03%.
  • 加载中
    1. [1]

      Kim, T.; Kim, J. H.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T. S.; Kim, B. J. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547.  doi: 10.1038/ncomms9547

    2. [2]

      Diao, Y.; Zhou, Y.; Kurosawa, T.; Shaw, L.; Wang, C.; Park, S.; Guo, Y.; Reinspach, J. A.; Gu, K.; Gu, X.; Tee, B. C. K.; Pang, C.; Yan, H.; Zhao, D.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun. 2015, 6, 7955.  doi: 10.1038/ncomms8955

    3. [3]

      Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L. Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 5313-5317.  doi: 10.1002/anie.201601305

    4. [4]

      Zhou, N.; Dudnik, A. S.; Li, T. I. N.; Manley, G. E. F.; Aldrich, T. J.; Guo, P.; Liao, H. C.; Chen, Z.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Cruz, M. O.; Marks, T. J. All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J. Am. Chem. Soc. 2016, 138, 1240-1251.  doi: 10.1021/jacs.5b10735

    5. [5]

      Li, Y.; Yang, Y.; Bao, X.; Qiu, M.; Liu, Z.; Wang, N.; Zhang, G.; Yang, R.; Zhang, D. New π-conjugated polymers as acceptors designed for all polymer solar cells based on imide/amide-derivatives. J. Mater. Chem. C 2016, 4, 185-192.  doi: 10.1039/C5TC02615F

    6. [6]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhang, G.; Ade, H.; Yan, H.; Zhao, D. Side-chain engineering of perylenediimide-vinylene polymer acceptors for high-performance all-polymer solar cells. Mater. Chem. Front. 2017, 1, 1362-1398.  doi: 10.1039/C6QM00355A

    7. [7]

      Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 13688-13692.

    8. [8]

      Dai, S.; Huang, S.; Yu, H.; Ling, Q.; Zhan, X. Perylene and naphthalene diimide copolymers for all-polymer solar cells: Effect of perylene/naphthalene ratio. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 682-689.  doi: 10.1002/pola.28392

    9. [9]

      Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 2018, 8, 1703085.  doi: 10.1002/aenm.v8.14

    10. [10]

      Yuan, J.; Ford, M. J.; Xu, Y.; Zhang, Y.; Bazan, G. C.; Ma, W. Improved tandem all-polymer solar cells performance by using spectrally matched subcells. Adv. Energy Mater. 2018, 8, 1703291.  doi: 10.1002/aenm.v8.14

    11. [11]

      Yin, Y.; Yang, J.; Guo, F.; Zhou, E.; Zhao, L.; Zhang, Y. High-performance all-polymer solar cells achieved by fused perylenediimide-based conjugated polymer acceptors. ACS Appl. Mater. Interfaces 2018, 10, 15962-15970.  doi: 10.1021/acsami.8b03603

    12. [12]

      Zhou, Y.; Yan, Q.; Zheng, Y. Q.; Wang, J. Y.; Zhao, D.; Pei, J. New polymer acceptors for organic solar cells: The effect of regio-regularity and device configuration. J. Mater. Chem. A 2013, 1, 6609-6613.  doi: 10.1039/c3ta10864c

    13. [13]

      Hu, Z.; Ying, L.; Huang, F.; Cao, Y. Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Sci. China Chem. 2017, 60, 571-582.  doi: 10.1007/s11426-016-0424-9

    14. [14]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. Acc. Chem. Res. 2016, 49, 2424-2434.  doi: 10.1021/acs.accounts.6b00347

    15. [15]

      Jung, J.; Lee, W.; Lee, C.; Ahn, H.; Kim, B. J. Controlling molecular orientation of naphthalenediimide-based polymer acceptors for high performance all-polymer solar cells. Adv. Energy Mater. 2016, 6, 1600504.  doi: 10.1002/aenm.201600504

    16. [16]

      Zhou, N.; Lin, H.; Lou, S. J.; Yu, X.; Guo, P.; Manley, E. F.; Loser, S.; Hartnett, P.; Huang, H.; Wasielewski, M. R.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv. Energy Mater. 2014, 4, 1300785.  doi: 10.1002/aenm.201300785

    17. [17]

      Mu, C.; Liu, P.; Ma, W.; Jiang, K.; Zhao, J.; Zhang, K.; Chen, Z.; Wei, Z.; Yi, Y.; Wang, J.; Yang, S.; Huang, F.; Facchetti, A.; Ade, H.; Yan, H. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 2014, 26, 7224-7230.  doi: 10.1002/adma.v26.42

    18. [18]

      Choi, J.; Kim, K. H.; Yu, H.; Lee, C.; Kang, H.; Song, I.; Kim, Y.; Oh, J. H.; Kim, B. J. Importance of electron transport ability in naphthalene diimide-based polymer acceptors for high-performance, additive-free, all-polymer solar cells. Chem. Mater. 2015, 27, 5230-5237.  doi: 10.1021/acs.chemmater.5b01274

    19. [19]

      Ye, L.; Jiao, X.; Zhao, W.; Zhang, S.; Yao, H.; Li, S.; Ade, H.; Hou, J. Manipulation of domain purity and orientational ordering in high performance all-polymer solar cells. Chem. Mater. 2016, 28, 6178-6185.  doi: 10.1021/acs.chemmater.6b02222

    20. [20]

      Hwang, Y. J.; Earmme, T.; Courtright, B. A. E.; Eberle, F. N.; Jenekhe, S. A. N-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J. Am. Chem. Soc. 2015, 137, 4424-4434.  doi: 10.1021/ja513260w

    21. [21]

      Suranagi, S. R.; Singh, R.; Kim, J. H.; Kim, M.; Ade, H.; Cho, K. Molecular engineering of perylene-diimide-based polymer acceptors containing heteroacene units for all-polymer solar cells. Org. Electron. 2018, 58, 222-230.  doi: 10.1016/j.orgel.2018.02.015

    22. [22]

      Dai, S.; Cheng, P.; Lin, Y.; Wang, Y.; Ma, L.; Ling, Q.; Zhan, X. Perylene and naphthalene diimide polymers for all-polymer solar cells: A comparative study of chemical copolymerization and physical blend. Polym. Chem. 2015, 6, 5254-5263.  doi: 10.1039/C5PY00665A

    23. [23]

      Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide-based n-type photovoltaic polymers. Sol. RRL 2018, 2, 1700230.  doi: 10.1002/solr.v2.4

    24. [24]

      Jung, I. H.; Zhao, D.; Jang, J.; Chen, W.; Landry, E. S.; Lu, L.; Talapin, D. V.; Yu, L. Development and structure/property relationship of new electron accepting polymers based on thieno [2′,3′:4,5] pyrido [2,3-g] thieno [3,2-c] quinoline-4, 10-dione for all-polymer solar cells. Chem. Mater. 2015, 27, 5941-5948.  doi: 10.1021/acs.chemmater.5b01928

    25. [25]

      Cheng, P.; Lin, Y.; Zawacka, N. K.; Andersen, T. R.; Liu, W.; Bundgaard, E.; Jørgensen, M.; Chen, H.; Krebs, F. C.; Zhan, X. Comparison of additive amount used in spin-coated and roll-coated organic solar cells. J. Mater. Chem. A 2014, 2, 19542-19549.  doi: 10.1039/C4TA04906C

    26. [26]

      Zhang, Y.; Wan, Q.; Guo, X.; Li, W.; Guo, B.; Zhang, M.; Li, Y. Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains. J. Mater. Chem. A 2015, 3, 18442-18449.  doi: 10.1039/C5TA05014F

    27. [27]

      Zhou, W.; Zhang, Z. G.; Ma, L.; Li, Y.; Zhan, X. Dithienocoronene diimide based conjugated polymers as electron acceptors for all-polymer solar cells. Sol. Energy Mater. Sol. Cells 2013, 112, 13-19.  doi: 10.1016/j.solmat.2013.01.005

    28. [28]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    29. [29]

      Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884-1890.  doi: 10.1002/adma.201504629

    30. [30]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.  doi: 10.1002/adma.201703906

    31. [31]

      Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 2007, 129, 7246-7247.  doi: 10.1021/ja071760d

    32. [32]

      Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.; Appleton, A. L.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C. B.; Salleo, A.; Ade, H.; Zhao, D.; Bao, Z. High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 2014, 26, 37673772.

    33. [33]

      Li, S.; Zhang, H.; Zhao, W.; Ye, L.; Yao, H.; Yang, B.; Zhang, S.; Hou, J. Green-solvent-processed all-polymer solar cells containing a perylene diimide-based acceptor with an efficiency over 6.5%. Adv. Energy Mater. 2016, 6, 1501991.  doi: 10.1002/aenm.201501991

    34. [34]

      Guo, Y.; Li, Y.; Awartani, O.; Zhao, J.; Han, H.; Ade, H.; Zhao, D.; Yan, H. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions. Adv. Mater. 2016, 28, 8483-8489.  doi: 10.1002/adma.v28.38

    35. [35]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 2017, 1700309.

    36. [36]

      Lee, W.; Lee, C.; Yu, H.; Kim, D. J.; Wang, C.; Woo, H. Y.; Oh, J. H.; Kim, B. J. Side chain optimization of naphthalenediimide-bithiophene-based polymers to enhance the electron mobility and the performance in all-polymer solar cells. Adv. Funct. Mater. 2016, 26, 1543-1553.  doi: 10.1002/adfm.v26.10

    37. [37]

      Shi, S.; Yuan, J.; Ding, G.; Ford, M.; Lu, K.; Shi, G.; Sun, J.; Ling, X.; Li, Y.; Ma, W. Improved all-polymer solar cell performance by using matched polymer acceptor. Adv. Funct. Mater. 2016, 26, 5669-5678.  doi: 10.1002/adfm.v26.31

    38. [38]

      Ye, L.; Jiao, X.; Zhang, H.; Li, S.; Yao, H.; Ade, H.; Hou, J. 2D-conjugated benzodithiophene-based polymer acceptor: Design, synthesis, nanomorphology, and photovoltaic performance. Macromolecules 2015, 48, 7156-7163.  doi: 10.1021/acs.macromol.5b01537

    39. [39]

      Hwang, Y. J; Courtright, B. A. E.; Ferreira, A. S.; Tolbert, S. H.; Jenekhe, S. A. 7.7% efficient all-polymer solar cells. Adv. Mater. 2015, 27, 4578-4584.  doi: 10.1002/adma.v27.31

    40. [40]

      Ye, L.; Jiao, X.; Zhang, H.; Li, S.; Yao, H.; Ade, H.; Hou, J. 2D-conjugated benzodithiophene-based polymer acceptor: design, synthesis, nanomorphology, and photovoltaic performance. Macromolecules 2015, 48, 7156-7163.  doi: 10.1021/acs.macromol.5b01537

    41. [41]

      Chang, H.; Chen, Z.; Yang, X.; Yin, Q.; Zhang, J.; Ying, L.; Jiang, X. F.; Xu, B.; Huang, F.; Cao, Y. Novel perylene diimide based polymeric electron-acceptors containing ethynyl as the π-bridge for all-polymer solar cells. Org. Electron. 2017, 45, 227-233.  doi: 10.1016/j.orgel.2017.03.022

    42. [42]

      Xiong, W.; Meng, X.; Liu, T.; Cai, Y.; Xue, X.; Li, Z.; Sun, X.; Huo, L.; Ma, W.; Sun, Y. Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Org. Electron. 2017, 50, 376-383.  doi: 10.1016/j.orgel.2017.08.005

    43. [43]

      Chen, D.; Yao, J.; Chen, L.; Yin, J.; Lv, R.; Huang, B.; Liu, S.; Zhang, Z. G.; Yang, C.; Chen Y.; Li, Y. Dye-incorporated polynaphthalenediimide acceptor for additive-free high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2018, 57, 4580-4584.  doi: 10.1002/anie.v57.17

    44. [44]

      Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing. J. Am. Chem. Soc. 2016, 138, 10935-10944.  doi: 10.1021/jacs.6b04822

    45. [45]

      Huo, L.; Xue, X.; Liu, T.; Xiong, W.; Qi, F.; Fan, B.; Xie, D.; Liu, F.; Yang, C.; Sun, Y. Subtle side-chain engineering of random terpolymers for high performance organic solar cells. Chem. Mater. 2018, 30, 3294-3300.  doi: 10.1021/acs.chemmater.8b00510

    46. [46]

      Sharma, S.; Kolhe, N. B.; Gupta, V.; Bharti, V.; Sharma, A.; Datt, R.; Chand, S.; Asha, S. K. Improved all-polymer solar cell performance of n-type naphthalene diimide–bithiophene P (NDI2OD-T2) copolymer by incorporation of perylene diimide as coacceptor. Macromolecules 2016, 49, 8113-8125.  doi: 10.1021/acs.macromol.6b01566

    47. [47]

      Li, X.; Sun, P.; Wang, Y.; Shan, H.; Xu, J.; Song, X.; Xu, Z.; Chen, Z. K. A random copolymer approach to develop nonfullerene acceptors for all-polymer solar cells. J. Mater. Chem. C 2016, 4, 2106-2110.  doi: 10.1039/C6TC00031B

    48. [48]

      Cheng, P.; Zhao, X.; Zhou, W.; Hou, J.; Li Y.; Zhan, X. Towards high-efficiency non-fullerene organic solar cells: Matching small molecule/polymer donor/acceptor. Org. Electron. 2014, 15, 2270-2276.  doi: 10.1016/j.orgel.2014.06.025

    49. [49]

      Chen, Y.; Tang, A.; Zhang, X.; Lu, Z.; Huang, J.; Zhan, C.; Yao, J. A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells. J. Mater. Chem. A 2014, 2, 1869-1876.  doi: 10.1039/C3TA14335J

    50. [50]

      Lu, Z.; Jiang, B.; Zhang, X.; Tang, A.; Chen, L.; Zhan, C.; Yao, J. Perylene-diimide based non-fullerene solar cells with 4.34% efficiency through engineering surface donor/acceptor compositions. Chem. Mater. 2014, 26, 2907-2914.  doi: 10.1021/cm5006339

    51. [51]

      Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X. Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 2016, 4, 17604-17622.  doi: 10.1039/C6TA06978A

    52. [52]

      Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J. Am. Chem. Soc. 2016, 138, 10184-10190.  doi: 10.1021/jacs.6b04368

    53. [53]

      Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q. Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy Environ. Sci. 2017, 10, 1739-1745.  doi: 10.1039/C7EE00805H

    54. [54]

      Ma, J.; Yin, L.; Zou, G.; Zhang, Q. Regioisomerically pure 1,7-dibromo-substituted perylene bisimide dyes: Efficient synthesis, separation, and characterization. Eur. J. Org. Chem. 2015, 15, 3296-3302.

    55. [55]

      Tanimoto, H.; Mori, J.; Ito, S.; Nishiyama, Y.; Morimoto, T.; Tanaka, K.; Chujo, Y.; Kakiuchi, K. From molecular to macroscopic engineering: Shaping hydrogen-bonded organic nanomaterials. Chem. Eur. J. 2017, 23, 10080-10092.  doi: 10.1002/chem.v23.42

    56. [56]

      Hahm, S. G.; Rho, Y.; Jung, J.; Kim, S. H.; Sajoto, T.; Kim, F. S.; Barlow, S.; Park, C. E.; Jenekhe, S. A.; Marder, S. R.; Ree, M. High-performance n-channel thin-film field-effect transistors based on a nanowire-forming polymer. Adv. Funct. Mater. 2013, 23, 2060-2071.  doi: 10.1002/adfm.v23.16

    57. [57]

      Schäfer, J.; Holzapfel, M.; Mladenova, B.; Kattnig, D.; Krummenacher, I.; Braunschweig, H.; Grampp, G.; Lambert, C. Hole transfer processes in meta- and para-conjugated mixed valence compounds: unforeseen effects of bridge substituents and solvent dynamics. J. Am. Chem. Soc. 2017, 139, 6200-6209.  doi: 10.1021/jacs.7b01650

    58. [58]

      Nam, S.; Hahm, S. G.; Han, H.; Seo, J.; Kim, C.; Kim, H.; Marder, S. R.; Ree, M.; Kim, Y. Naphthalene diimide based n-type conjugated polymers as efficient cathode interfacial materials for polymer and perovskite solar cells. ACS Sustainable Chem. Eng. 2017, 9, 36070-36081.

    59. [59]

      Hu, Z.; Chen, Z.; Zhang, K.; Zheng, N.; Xie, R.; Liu, X.; Yang, X.; Huang, F.; Cao, Y. Self-doped n-type water/alcohol soluble-conjugated polymers with tailored backbones and polar groups for highly efficient polymer solar cells. Sol. RRL 2017, 1, 1700055.  doi: 10.1002/solr.201700055

    60. [60]

      Brown, P. J.; Thomas, D. S.; Koler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.  doi: 10.1103/PhysRevB.67.064203

    61. [61]

      Su, W.; Fan, Q.; Guo, X.; Chen, J.; Wang, Y.; Wang, X.; Dai, P.; Ye, C.; Bao, X.; Ma, W.; Zhang, M.; Li, Y. Significant enhancement of the photovoltaic performance of organic small molecule acceptors via side-chain engineering. J. Mater. Chem. A 2018, 6, 7988-7996.  doi: 10.1039/C8TA01509K

    62. [62]

      Feng, S.; Zhang, C.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 2017, 29, 1703527.  doi: 10.1002/adma.201703527

  • 加载中
    1. [1]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    2. [2]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    3. [3]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    4. [4]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    5. [5]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    8. [8]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    9. [9]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    10. [10]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    11. [11]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    12. [12]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    13. [13]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    14. [14]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    18. [18]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    19. [19]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    20. [20]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

Metrics
  • PDF Downloads(0)
  • Abstract views(779)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return