Citation: Rui-Zhi Zhang, Ju Chen, Mao-Wei Huang, Jian Zhang, Guo-Qiang Luo, Bao-Zhen Wang, Mei-Juan Li, Qiang Shen, Lian-Meng Zhang. Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 279-288. doi: 10.1007/s10118-019-2187-2 shu

Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres

  • Corresponding author: Guo-Qiang Luo, luogq@whut.edu.cn
  • Received Date: 7 August 2018
    Revised Date: 6 September 2018
    Accepted Date: 7 September 2018
    Available Online: 10 October 2018

  • Cellular foams are widely applied as protective and energy absorption materials in both civil and military fields. A facile and simple one-step heating method to fabricate polymeric foams is measured by adopting thermally expandable microspheres (TEMs). The ideal foaming parameters for various density foams were determined. Moreover, a mechanical testing machine and split Hopkinson bar (SHPB) were utilized to explore the quasi-static and dynamic compressive properties. Results showed that the cell sizes of the as-prepared TEMs foams were in the micrometer range of 11 μm to 20 μm with a uniform cell size distribution. All the foams exhibited good compressive behavior under both quasi-static and high strain rate conditions, and were related to both foam densities and strain rates. The compressive strength of the TEMs foams at 8400 s−1 was up to 4 times higher than that at 10−4 s−1. The effects exerted by the strain rate and sample density were evaluated by a power law equation. With increasing density, the strain rate effect was more prominent. At quasi-static strain rates below 3000 s−1 regime, initial cell wall buckling and subsequent cellular structure flattening were the main failure mechanisms. However, in the high strain rate (HSR) regime (above 5000 s−1), the foams were split into pieces by the following transverse inertia force.
  • 加载中
    1. [1]

      Gibson, L. J.; Ashby, M. F. in Cellular solids: Structure and properties. Cambridge university press: 1999.

    2. [2]

      Eaves, D. in Handbook of Polymer Foams. Natl Book Network 2004.

    3. [3]

      Landro, L. D.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 2002, 21, 217-228.  doi: 10.1016/S0142-9418(01)00073-3

    4. [4]

      Lee, S. T.; Ramesh, N. S. Polymeric Foams: Mechanisms and Materials. IEEE Electrical Insulation Magazine 2004, 21, 56-56.

    5. [5]

      Bao, J. B.; Junior, A. N.; Weng, G. S.; Wang, J.; Fang, Y. W.; Hu, G. H. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2016, 111, 63-73.  doi: 10.1016/j.supflu.2016.01.016

    6. [6]

      Castiglioni, A.; Castellani, L.; Cuder, G.; Comba, S. Relevant materials parameters in cushioning for EPS foams. Colloid. Surface. A 2017, 534, 71-77.  doi: 10.1016/j.colsurfa.2017.03.049

    7. [7]

      Zhang, R.; Zhang, L.; Zhang, J.; Luo, G.; Xiao, D.; Song, Z.; Li, M.; Xiong, Y.; Shen, Q. Compressive response of PMMA microcellular foams at low and high strain rates. J. Appl. Polym. Sci. 2018, 135, 46044.  doi: 10.1002/app.v135.13

    8. [8]

      Sun, X.; Kharbas, H.; Peng, J.; Turng, L. S. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 2015, 56, 102-110.  doi: 10.1016/j.polymer.2014.09.066

    9. [9]

      Sun, J. C.; Xu, J. K.; He, Z. L.; Ren, H. Y.; Wang, Y. Q.; Zhang, L.; Bao, J. B. Role of nano silica in supercritical CO2 foaming of thermoplastic poly(vinyl alcohol) and its effect on cell structure and mechanical properties. Eur. Polym. J. 2018, 105, 491-499.  doi: 10.1016/j.eurpolymj.2018.06.009

    10. [10]

      Wang, J.; Zhang, L.; Bao, J.-b. Supercritical CO2 Assisted preparationof open-cell foams of linear low-density polyethylene and linear low-density polyethylene/carbon nanotube composites. Chinese. J. Polym. Sci. 2016, 34, 889-900.  doi: 10.1007/s10118-016-1806-4

    11. [11]

      Andersson, H.; Griss, P.; Stemme, G. Expandable microspheres-surface immobilization techniques. Sensors Actuators B: Chem. 2002, 84, 290-295.  doi: 10.1016/S0925-4005(02)00017-5

    12. [12]

      Morehouse, D. S.; Tetreault, R. J. Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same. 1971, US Patent 3615972.

    13. [13]

      Hou, Z. S.; Kan, C. Y. Preparation and properties of thermoexpandable polymeric microspheres. Chinese Chem. Lett. 2014, 25, 1279-1281.  doi: 10.1016/j.cclet.2014.04.011

    14. [14]

      Liu, M. X.; Gan, L. H.; Xiong, W.; Zhu, D. Z.; Xu, Z. J.; Chen, L. W. Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors. Chinese Chem. Lett. 2013, 24, 1037-1040.  doi: 10.1016/j.cclet.2013.07.013

    15. [15]

      Chen, S. Y.; Sun, Z. C.; Li, L. H.; Xiao, Y. H.; Yu, Y. M. Preparation and characterization of conducting polymer-coated thermally expandable microspheres. Chinese Chem. Lett. 2017, 28, 658-662.  doi: 10.1016/j.cclet.2016.11.005

    16. [16]

      Oleschuk, R. D.; Shultz-Lockyear, L. L.; Ning, Y.; Harrison, D. J. Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Anal. Chem. 2000, 72, 585-590.  doi: 10.1021/ac990751n

    17. [17]

      Andersson, H.; Ahmadian, A.; Wijngaart, W. V. D.; Nilsson, P.; Enoksson, P.; Uhlen, M.; Stemme, G. in Micromachined flow-through filter-chamber for solid phase DNA analysis. Springer: 2000, 473-476.

    18. [18]

      Lu, Y.; Broughton, J.; Winfield, P. Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive. Int. J. Adhes. Adhes. 2016, 66, 33-40.  doi: 10.1016/j.ijadhadh.2015.12.007

    19. [19]

      Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315-3324.  doi: 10.1016/j.polymer.2006.03.013

    20. [20]

      Kawaguchi, Y.; Itamura, Y.; Onimura, K.; Oishi, T. Effects of the chemical structure on the heat resistance of thermoplastic expandable microspheres. J. Appl. Polym. Sci. 2005, 96, 1306-1312.  doi: 10.1002/(ISSN)1097-4628

    21. [21]

      Vamvounis, G.; Jonsson, M.; Malmström, E.; Hult, A. Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. Eur. Polym. J. 2013, 49, 1503-1509.  doi: 10.1016/j.eurpolymj.2013.01.010

    22. [22]

      Zhou, S. Q.; Zhou, Z. F.; Ji, C. R.; Xu, W. B.; Ma, H. H.; Ren, F. M.; Wang, X. F. Formation mechanism of thermally expandable microspheres of PMMA encapsulating NaHCO3 and ethanol via thermally induced phase separation. RSC Adv. 2017, 7, 50603-50609.  doi: 10.1039/C7RA10132E

    23. [23]

      Shen, Q.; Xiong, Y. L.; Yuan, H.; Luo, G. Q.; Liang, X.; Zhang, L. M. The fabrication and characterization of polymeric microcellular foams with designed gradient density. J. Phys: Conf. Ser. 2013, 419, 012009.  doi: 10.1088/1742-6596/419/1/012009

    24. [24]

      Bouix, R.; Viot, P.; Lataillade, J. L. Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effect. Int. J. Impact Eng. 2013, 36, 329-342.

    25. [25]

      Ji, L. J.; Jiang, Y. S.; Liang, G.; Liu, Z. Q.; Zhu, J.; Huang, K.; Zhu, A. P. Thermally expandable microspheres of poly(acrylonitrile/ethyl methacrylate/methacrylic acid) with fast thermal response property. Pigm. Resin Technol. 2017, 46, 115-121.  doi: 10.1108/PRT-08-2015-0070

    26. [26]

      Song, B.; Lu, W. Y.; Syn, C. J.; Chen, W. The effects of strain rate, density, and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)-based rigid polyurethane foams during compression. J. Mater. Sci. 2008, 44, 351-357.

    27. [27]

      Chen, W.; Lu, F.; Frew, D. J.; Forrestal, M. J. Dynamic compression testing of soft materials. J. Appl. Mech. 2002, 69, 214.  doi: 10.1115/1.1464871

    28. [28]

      Sharpe, W. N. in Springer handbook of experimental solid mechanics. Springer Science & Business Media: 2008.

    29. [29]

      Chen, W. W.; Song, B. in Split Hopkinson (Kolsky) Bar, Design Testing and Applications. Springer, New York , 2015.

    30. [30]

      Song, B. Dynamic stress equilibration in split hopkinson pressure bar tests on soft materials. Exp. Mech. 2004, 44, 300-312.  doi: 10.1007/BF02427897

    31. [31]

      Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 1949, 62, 676-700.  doi: 10.1088/0370-1301/62/11/302

    32. [32]

      Hay, J.; Pharr, G. ASM Handbook: Mechanical testing and evaluation. ASM Int. 2000, 8, 232.

    33. [33]

      Xiao, D.; Li, Y.; Hu, S. Study of small dimension specimens on SHPB test. AIP Conf. Proc. 2008, 955, 1151-1154.

    34. [34]

      Luong, D. D.; Pinisetty, D.; Gupta, N. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art. Compos. Part B: Eng. 2013, 44, 403-416.  doi: 10.1016/j.compositesb.2012.04.060

    35. [35]

      Kuhn, H.; Medlin, D. ASM Handbook. Volume 8: Mechanical Testing and Evaluation. ASM Int. 2000. 9982000.

    36. [36]

      Tagarielli, V.; Deshpande, V.; Fleck, N. The high strain rate response of PVC foams and end-grain balsa wood. Compos. Part B: Eng. 2008, 39, 83-91.  doi: 10.1016/j.compositesb.2007.02.005

    37. [37]

      Subhash, G.; Liu, Q.; Gao, X.-L. Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. Int. J. Impact Eng. 2006, 32, 1113-1126.  doi: 10.1016/j.ijimpeng.2004.11.006

    38. [38]

      Koohbor, B.; Mallon, S.; Kidane, A.; Lu, W. Y. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading. Polym. Test. 2015, 44, 112-124.  doi: 10.1016/j.polymertesting.2015.03.016

  • 加载中
    1. [1]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    4. [4]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    5. [5]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    6. [6]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    7. [7]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    11. [11]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    14. [14]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    17. [17]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    18. [18]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    19. [19]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    20. [20]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

Metrics
  • PDF Downloads(0)
  • Abstract views(865)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return