Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres
- Corresponding author: Guo-Qiang Luo, luogq@whut.edu.cn
Citation:
Rui-Zhi Zhang, Ju Chen, Mao-Wei Huang, Jian Zhang, Guo-Qiang Luo, Bao-Zhen Wang, Mei-Juan Li, Qiang Shen, Lian-Meng Zhang. Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres[J]. Chinese Journal of Polymer Science,
;2019, 37(3): 279-288.
doi:
10.1007/s10118-019-2187-2
Gibson, L. J.; Ashby, M. F. in Cellular solids: Structure and properties. Cambridge university press: 1999.
Eaves, D. in Handbook of Polymer Foams. Natl Book Network 2004.
Landro, L. D.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 2002, 21, 217-228.
doi: 10.1016/S0142-9418(01)00073-3
Lee, S. T.; Ramesh, N. S. Polymeric Foams: Mechanisms and Materials. IEEE Electrical Insulation Magazine 2004, 21, 56-56.
Bao, J. B.; Junior, A. N.; Weng, G. S.; Wang, J.; Fang, Y. W.; Hu, G. H. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2016, 111, 63-73.
doi: 10.1016/j.supflu.2016.01.016
Castiglioni, A.; Castellani, L.; Cuder, G.; Comba, S. Relevant materials parameters in cushioning for EPS foams. Colloid. Surface. A 2017, 534, 71-77.
doi: 10.1016/j.colsurfa.2017.03.049
Zhang, R.; Zhang, L.; Zhang, J.; Luo, G.; Xiao, D.; Song, Z.; Li, M.; Xiong, Y.; Shen, Q. Compressive response of PMMA microcellular foams at low and high strain rates. J. Appl. Polym. Sci. 2018, 135, 46044.
doi: 10.1002/app.v135.13
Sun, X.; Kharbas, H.; Peng, J.; Turng, L. S. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 2015, 56, 102-110.
doi: 10.1016/j.polymer.2014.09.066
Sun, J. C.; Xu, J. K.; He, Z. L.; Ren, H. Y.; Wang, Y. Q.; Zhang, L.; Bao, J. B. Role of nano silica in supercritical CO2 foaming of thermoplastic poly(vinyl alcohol) and its effect on cell structure and mechanical properties. Eur. Polym. J. 2018, 105, 491-499.
doi: 10.1016/j.eurpolymj.2018.06.009
Wang, J.; Zhang, L.; Bao, J.-b. Supercritical CO2 Assisted preparationof open-cell foams of linear low-density polyethylene and linear low-density polyethylene/carbon nanotube composites. Chinese. J. Polym. Sci. 2016, 34, 889-900.
doi: 10.1007/s10118-016-1806-4
Andersson, H.; Griss, P.; Stemme, G. Expandable microspheres-surface immobilization techniques. Sensors Actuators B: Chem. 2002, 84, 290-295.
doi: 10.1016/S0925-4005(02)00017-5
Morehouse, D. S.; Tetreault, R. J. Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same. 1971, US Patent 3615972.
Hou, Z. S.; Kan, C. Y. Preparation and properties of thermoexpandable polymeric microspheres. Chinese Chem. Lett. 2014, 25, 1279-1281.
doi: 10.1016/j.cclet.2014.04.011
Liu, M. X.; Gan, L. H.; Xiong, W.; Zhu, D. Z.; Xu, Z. J.; Chen, L. W. Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors. Chinese Chem. Lett. 2013, 24, 1037-1040.
doi: 10.1016/j.cclet.2013.07.013
Chen, S. Y.; Sun, Z. C.; Li, L. H.; Xiao, Y. H.; Yu, Y. M. Preparation and characterization of conducting polymer-coated thermally expandable microspheres. Chinese Chem. Lett. 2017, 28, 658-662.
doi: 10.1016/j.cclet.2016.11.005
Oleschuk, R. D.; Shultz-Lockyear, L. L.; Ning, Y.; Harrison, D. J. Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Anal. Chem. 2000, 72, 585-590.
doi: 10.1021/ac990751n
Andersson, H.; Ahmadian, A.; Wijngaart, W. V. D.; Nilsson, P.; Enoksson, P.; Uhlen, M.; Stemme, G. in Micromachined flow-through filter-chamber for solid phase DNA analysis. Springer: 2000, 473-476.
Lu, Y.; Broughton, J.; Winfield, P. Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive. Int. J. Adhes. Adhes. 2016, 66, 33-40.
doi: 10.1016/j.ijadhadh.2015.12.007
Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315-3324.
doi: 10.1016/j.polymer.2006.03.013
Kawaguchi, Y.; Itamura, Y.; Onimura, K.; Oishi, T. Effects of the chemical structure on the heat resistance of thermoplastic expandable microspheres. J. Appl. Polym. Sci. 2005, 96, 1306-1312.
doi: 10.1002/(ISSN)1097-4628
Vamvounis, G.; Jonsson, M.; Malmström, E.; Hult, A. Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. Eur. Polym. J. 2013, 49, 1503-1509.
doi: 10.1016/j.eurpolymj.2013.01.010
Zhou, S. Q.; Zhou, Z. F.; Ji, C. R.; Xu, W. B.; Ma, H. H.; Ren, F. M.; Wang, X. F. Formation mechanism of thermally expandable microspheres of PMMA encapsulating NaHCO3 and ethanol via thermally induced phase separation. RSC Adv. 2017, 7, 50603-50609.
doi: 10.1039/C7RA10132E
Shen, Q.; Xiong, Y. L.; Yuan, H.; Luo, G. Q.; Liang, X.; Zhang, L. M. The fabrication and characterization of polymeric microcellular foams with designed gradient density. J. Phys: Conf. Ser. 2013, 419, 012009.
doi: 10.1088/1742-6596/419/1/012009
Bouix, R.; Viot, P.; Lataillade, J. L. Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effect. Int. J. Impact Eng. 2013, 36, 329-342.
Ji, L. J.; Jiang, Y. S.; Liang, G.; Liu, Z. Q.; Zhu, J.; Huang, K.; Zhu, A. P. Thermally expandable microspheres of poly(acrylonitrile/ethyl methacrylate/methacrylic acid) with fast thermal response property. Pigm. Resin Technol. 2017, 46, 115-121.
doi: 10.1108/PRT-08-2015-0070
Song, B.; Lu, W. Y.; Syn, C. J.; Chen, W. The effects of strain rate, density, and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)-based rigid polyurethane foams during compression. J. Mater. Sci. 2008, 44, 351-357.
Chen, W.; Lu, F.; Frew, D. J.; Forrestal, M. J. Dynamic compression testing of soft materials. J. Appl. Mech. 2002, 69, 214.
doi: 10.1115/1.1464871
Sharpe, W. N. in Springer handbook of experimental solid mechanics. Springer Science & Business Media: 2008.
Chen, W. W.; Song, B. in Split Hopkinson (Kolsky) Bar, Design Testing and Applications. Springer, New York , 2015.
Song, B. Dynamic stress equilibration in split hopkinson pressure bar tests on soft materials. Exp. Mech. 2004, 44, 300-312.
doi: 10.1007/BF02427897
Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 1949, 62, 676-700.
doi: 10.1088/0370-1301/62/11/302
Hay, J.; Pharr, G. ASM Handbook: Mechanical testing and evaluation. ASM Int. 2000, 8, 232.
Xiao, D.; Li, Y.; Hu, S. Study of small dimension specimens on SHPB test. AIP Conf. Proc. 2008, 955, 1151-1154.
Luong, D. D.; Pinisetty, D.; Gupta, N. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art. Compos. Part B: Eng. 2013, 44, 403-416.
doi: 10.1016/j.compositesb.2012.04.060
Kuhn, H.; Medlin, D. ASM Handbook. Volume 8: Mechanical Testing and Evaluation. ASM Int. 2000. 9982000.
Tagarielli, V.; Deshpande, V.; Fleck, N. The high strain rate response of PVC foams and end-grain balsa wood. Compos. Part B: Eng. 2008, 39, 83-91.
doi: 10.1016/j.compositesb.2007.02.005
Subhash, G.; Liu, Q.; Gao, X.-L. Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. Int. J. Impact Eng. 2006, 32, 1113-1126.
doi: 10.1016/j.ijimpeng.2004.11.006
Koohbor, B.; Mallon, S.; Kidane, A.; Lu, W. Y. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading. Polym. Test. 2015, 44, 112-124.
doi: 10.1016/j.polymertesting.2015.03.016
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212
Jing REN , Ruikui YAN , Xiaoli CHEN , Huali CUI , Hua YANG , Jijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844