Citation: Xiao-Jing Liu, Yu-He Tian, Yang-Cheng Lu. A Comparative Study on Emulsion Polymerization Processes of Styrene Initiated by Water-soluble and Oil-soluble Initiators[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 142-148. doi: 10.1007/s10118-019-2186-3 shu

A Comparative Study on Emulsion Polymerization Processes of Styrene Initiated by Water-soluble and Oil-soluble Initiators

  • Corresponding author: Yang-Cheng Lu, luyc@tsinghua.edu.cn
  • Received Date: 4 July 2018
    Revised Date: 22 August 2018
    Accepted Date: 30 August 2018
    Available Online: 25 September 2018

  • The solubility of initiator determines its distribution and the roles played in emulsion polymerization as well as the final products, but this is still lack of systematic investigation. The present work focuses on this issue by comparing the kinetic behaviors and product properties of styrene emulsion polymerization initiated by 2,2-azoisobutyronitrile (AIBN) and potassium persulphate (KPS). Compared to KPS-initiated emulsion polymerization, the AIBN-initiated polymerization was found to be insensitive to the type of emulsifier, and have high polymerization rate as well as narrow molecular weight distribution and particle size distribution. This result indicates the effective free radicals are generated in micelles or colloids, which could decrease the proportion of homogeneous nucleation and make the process and product more controllable. As a consequence, there is a linear relationship between molecular weight of product and AIBN concentration in lg-lg coordinate. It provided a reference for the preparation of latexes with specified molecular weight and supported the possibility of the coexistence of multiple free radicals in one micelle or colloid when using oil-soluble initiator.
  • 加载中
    1. [1]

      Asua, J. M. Emulsion polymerization: from fundamental mechanisms to process developments. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 1025-1041.  doi: 10.1002/(ISSN)1099-0518

    2. [2]

      Zhao, B.; Deng, J. P. Emulsion polymerization of acetylenics for constructing optically active helical polymer nanoparticles. Polym. Rev. 2017, 57, 119-137.  doi: 10.1080/15583724.2015.1136642

    3. [3]

      Jiang, S.; Van Dyk, A.; Maurice, A.; Bohling, J.; Fasano, D.; Brownell, S. Design colloidal particle morphology and self-assembly for coating applications. Chem. Soc. Rev. 2017, 46, 3792-3807.  doi: 10.1039/C6CS00807K

    4. [4]

      Smith, W. V.; Ewart, R. H. Kinetics of emulsion polymerization. J. Chem. Phys. 1948, 16, 592-599.  doi: 10.1063/1.1746951

    5. [5]

      Gardon, J. L. Emulsion polymerization. I. Recalculation and extension of Smith- Ewart theory. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 623-641.  doi: 10.1002/pol.1968.150060318

    6. [6]

      Gardon, J. L. Emulsion polymerization. II. Review of experimental data in the context of the context of the revised Smith-Ewart theory. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 643-664.  doi: 10.1002/pol.1968.150060319

    7. [7]

      Dong, Y. A molecular theory for particle nucleation: Primary particle formation in emulsion polymerization. J. Colloid Interface Sci. 2008, 326, 354-359.  doi: 10.1016/j.jcis.2008.06.033

    8. [8]

      Ozdeger, E.; Sudol, E. D.; EIAasser, M. S.; Klein, A. Role of the nonionic surfactant triton X-405 in emulsion polymerization. III. Copolymerization of styrene and n-butyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3837.  doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Yamamoto, T. Effect of the amount of pi electrons in aromatic monomer on the surface potential of polymeric particles obtained through soap-free emulsion polymerization using AIBN. Chem. Lett. 2015, 44, 1555-1556.  doi: 10.1246/cl.150759

    10. [10]

      Yamamoto, T.; Takahashi, Y. Synthesis of hydrocolloid through polymerization of styrene and N-vinyl acetamide by AIBN. Colloid Surf. A 2017, 516, 80-84.  doi: 10.1016/j.colsurfa.2016.12.023

    11. [11]

      Liu, B. J.; Wang, Y. J.; Zhang, M. Y.; Zhang, H. X. Initiator systems effect on particle coagulation and particle size distribution in one-step emulsion polymerization of styrene. Polymers-Basel 2016, 8, 55.  doi: 10.3390/polym8020055

    12. [12]

      Zhang, Y. W.; Zhuang, X.; Gu, W. J.; Zhao, J. X. Synthesis of polyacrylonitrile nanoparticles at high monomer concentrations by AIBN-initiated semi-continuous emulsion polymerization method. Eur. Polym. J. 2015, 67, 57-65.  doi: 10.1016/j.eurpolymj.2015.03.057

    13. [13]

      Ali, A. M. I.; Tauer, K.; Sedlak, M. Comparing emulsion polymerization of methacrylate-monomers with different hydrophilicity. Polymer 2005, 46(4), 1017-1023.  doi: 10.1016/j.polymer.2004.11.037

    14. [14]

      Lu, Y. C.; Liu, X. J.; Luo, G. S. Synthesis of polystyrene latex via emulsion polymerization with poly(vinyl alcohol) as sole stabilizer. J. Appl. Polym. Sci. 2017, 134, 45111.  doi: 10.1002/app.v134.32

    15. [15]

      Suzuki, A.; Matsuda, Y.; Masuda, T.; Kikuchi, K.; Okaya, T. Effect of additives on the initial stage of emulsion polymerization of styrene (St) using poly(vinyl alcohol) as a protective colloid. Colloid. Polym. Sci. 2006, 285(2), 193-201.  doi: 10.1007/s00396-006-1550-3

    16. [16]

      Kim, N.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Comparison of conventional and miniemulsion copolymerizations of acrylic monomers using poly(vinyl alcohol) as the sole stabilizer. Macromolecules 2004, 37, 2427-2433.  doi: 10.1021/ma035154o

    17. [17]

      Lee, S.; Mackay, D.; Rudin, A. A moderately water-soluble azo initiator for emulsion polymerizations. J. Appl. Polym. Sci. 1991, 42, 3076.

    18. [18]

      Autran, C.; de la Cal, J. C.; Asua, J. M. (Mini)emulsion polymerization kinetics using oil-soluble initiators. Macromolecules 2007, 40, 6233-6238.  doi: 10.1021/ma070916r

    19. [19]

      Capek, I. On the role of oil-soluble initiators in the radical polymerization of micellar systems. Adv. Colloid Interface Sci. 2001, 91, 295-334.  doi: 10.1016/S0001-8686(99)00036-6

    20. [20]

      Alduncin, J. A.; Forcada, J.; Barandiaran, M. J.; Asua, J. M. On the main locus of radical formation in emulsion polymerization initiated by oil-soluble initiators. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 1265-1270.  doi: 10.1002/pola.1991.080290905

    21. [21]

      Nomura, M.; Ikoma, J.; Fujita, K. Kinetics and mechanisms of emulsion polymerization initiated by oil-soluble initiators. IV. Kinetic modeling of unseeded emulsion polymerization of styrene initiated by 2, 2’-azobisisobutyronitrile. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2103-2113.  doi: 10.1002/pola.1993.080310816

    22. [22]

      Nomura, M.; Fujita, K. Kinetics and mechanism of emulsion polymerization initiated by oil-soluble initiators. Makromol. Chem. Rapid Commun. 1989, 10, 581-587.  doi: 10.1002/marc.1989.030101104

    23. [23]

      Mork, P. C.; Makame, Y. Compartmentalized polymerization with oil-soluble initiators. Kinetic effect of single radical formation. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2347-2354.  doi: 10.1002/(ISSN)1099-0518

    24. [24]

      Capek, I.; Barton, J.; Karpatyova, A. Emulsion polymerization of butyl methacrylate initiated by 2, 2’-azoisobutyronitrile. 3. On the applicability of the modified Smith-Ewart model. Makromol. Chem. 1987, 188, 703-710.  doi: 10.1002/macp.1987.021880404

    25. [25]

      Asua, J. M.; Rodriguez, V. S.; Sudol, E. D.; El-Aasser, M. S. The free radical distribution in emulsion polymerization using oil-soluble initiators. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3569-3587.  doi: 10.1002/pola.1989.080271103

    26. [26]

      Shang, Y.; Shan, G. R.; Pan, P. J. Kinetic and molecular weight modeling of miniemulsion polymerization initiated by oil-soluble initiators. Macromol. Chem. Phys. 2015, 216, 884-893.  doi: 10.1002/macp.v216.8

    27. [27]

      Barton, J.; Karpatyova, A. Emulsion polymerization of butyl methacrylate initiated by 2, 2’-azoisobutyronitrile. 1. Kinetic and mechanism. Macromol. Chem. Phys. 1987, 188, 693-702.  doi: 10.1002/macp.1987.021880403

    28. [28]

      Luo, Y. W.; Schork, F. J. Emulsion and miniemulsion polymerizations with an oil-soluble initiator in the presence and absence of an aqueous-phase radical scavenger. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3200-3211.  doi: 10.1002/(ISSN)1099-0518

    29. [29]

      Weiss, J.; Coupland, J. N.; Brathwaite, D.; McClements, D. J. Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles. Colloid Surf. A 1997, 121, 53-60.  doi: 10.1016/S0927-7757(96)03742-9

    30. [30]

      Van der Hoff, B. M. E. Kinetics of emulsion polymerization. Adv. Chem. Ser. 1962, 34, 6-31.  doi: 10.1021/advances

    31. [31]

      Capek, I. Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation. Adv. Colloid Interfac. 2002, 99, 77-162.  doi: 10.1016/S0001-8686(02)00005-2

    32. [32]

      Chern, C. S.; Lin, S. Y.; Chang, S. C.; Lin, J. Y.; Lin, Y. F. Effect of initiator on styrene emulsion polymerisation stabilised by mixed SDS/NP-40 surfactants. Polymer 1998, 39, 2281-2289.  doi: 10.1016/S0032-3861(97)00524-7

    33. [33]

      Weiss, J.; McClements, D. J. Mass transport phenomena in oil-in-water emulsions containing surfactant micelles: Solubilization. Langmuir 2000, 16, 5879-5883.  doi: 10.1021/la9914763

    34. [34]

      Capek, I.; Chudej, J. On the fine emulsion polymerization of styrene with non-ionic emulsifier. Polym. Bull. 1999, 43), 417-424.  doi: 10.1007/s002890050630

    35. [35]

      Chern, C. S.; Lin, C. H. Using a water-insoluble dye to probe the particle nucleation loci in styrene emulsion polymerization. Polymer 1999, 40, 139-147.  doi: 10.1016/S0032-3861(98)00232-8

    36. [36]

      Ozdeger, E.; Sudol, E. D.; El-Aasser, M. S.; Klein, A. Role of the nonionic surfactant Triton X-405 in emulsion polymerization. 1. Homopolymerization of styrene. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3813-3825.  doi: 10.1002/(ISSN)1099-0518

    37. [37]

      Nomura, M.; Tobita, H.; Suzuki, K. Emulsion polymerization: Kinetic and mechanistic aspects. Adv. Polym. Sci. 2005, 175, 1-128.  doi: 10.1007/b14102

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    17. [17]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    18. [18]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return