Citation: Jian Hu, Li-Li Han, Tong-Ping Zhang, Yong-Xin Duan, Jian-Ming Zhang. Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 253-257. doi: 10.1007/s10118-019-2184-5 shu

Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy

  • Corresponding author: Jian-Ming Zhang, zjm@qust.edu.cn
  • Received Date: 19 July 2018
    Revised Date: 22 August 2018
    Accepted Date: 28 August 2018
    Available Online: 25 September 2018

  • The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry (DSC) and in situ temperature dependent polarized Fourier transform infrared (FTIR) spectroscopy. It is found that, as the drawing temperature increases, melting of strain-induced mesophase in the heating process can remarkably interfere the crystallization behavior subsequently. Coupling with in situ polarized FTIR, from 60 °C to 76 °C, the mesophase melts partially rather than completely melting, and changes immediately to three-dimensional ordered structure. Of particular note, through monitoring the subtle spectral change in the critical phase transformation temperature from 60 °C to 64 °C, it is clearly demonstrated that relaxation of oriented amorphous chains initially takes place prior to the melting of mesophase.
  • 加载中
    1. [1]

      Allegra, G. in Interphases and Mesophases in Polymer Crystallization III, Springer, 2005.

    2. [2]

      Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598-1601.  doi: 10.1126/science.1100872

    3. [3]

      Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251, 898-905.  doi: 10.1126/science.251.4996.898

    4. [4]

      De Rosa, C.; Auriemma, F. R.; Giusto, G. O.; De Ballesteros, R. Helical mesophase of syndiotactic polypropylene in copolymers with 1-hexene and 1-octene. Macromolecules 2010, 43, 9802-9809.  doi: 10.1021/ma1021709

    5. [5]

      Androsch, R.; Di Lorenzo, M. L.; Schick, C.; Wunderlich, B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 2010, 51, 4639-4662.  doi: 10.1016/j.polymer.2010.07.033

    6. [6]

      De Rosa, C.; Auriemma, F.; Di Girolamo, R.; Romano, L. M.; De Luca, R. A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 2010, 43, 8559-8569.  doi: 10.1021/ma101543d

    7. [7]

      Mileva, D.; Androsch, R.; Zhuravlev, E.; Schick, C. Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 2009, 42, 7275-7278.  doi: 10.1021/ma901797b

    8. [8]

      Androsch, R. In situ atomic force microscopy of the mesomorphic monoclinic phase transition in isotactic polypropylene. Macromolecules 2008, 41, 533-535.  doi: 10.1021/ma702334q

    9. [9]

      Welsh, G. E.; Blundell, D. J.; Windle, A. H. Transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN). J. Mater. Sci. 2000, 35, 5225-5240.  doi: 10.1023/A:1004820824004

    10. [10]

      Cocca, M.; Androsch, R.; Righetti, M. C.; Malinconico, M.; Di Lorenzo, M. L. Conformationally disordered crystals and their influence on material properties: The cases of isotactic polypropylene, isotactic poly(1-butene), and poly(L-lactic acid). J. Mol. Struct. 2014, 1078, 114-132.  doi: 10.1016/j.molstruc.2014.02.038

    11. [11]

      Chen, C.Y.; Yang, C. F.; Jeng, U. S.; Su, A. C. Intrinsic metastability of the α′ phase and its partial transformation into α crystals during isothermal cold-crystallization of poly(L-lactide). Macromolecules 2014, 47, 5144-5151.  doi: 10.1021/ma501167e

    12. [12]

      Lan, Q.; Li, Y.; Chi, H. Highly enhanced mesophase formation in glassy poly(L-lactide) at low temperatures by low-pressure CO2 that provides moderately increased molecular mobility. Macromolecules 2016, 49, 2262-2271.  doi: 10.1021/acs.macromol.6b00044

    13. [13]

      Androsch, R.; Di Lorenzo, M. L. Effect of molar mass on the α′/α-transition in poly (L-lactic acid). Polymer 2017, 114, 144-148.  doi: 10.1016/j.polymer.2017.02.063

    14. [14]

      Su, F.; Li, X.; Zhou, W.; Zhu, S.; Ji, Y.; Wang, Z.; Qi, Z.; Li, L. Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules 2013, 46, 7399-7405.  doi: 10.1021/ma400952r

    15. [15]

      Zhang, B.; Chen, J.; Cui, J.; Zhang, H.; Ji, F.; Zheng, G.; Heck, B.; Reiter, G.; Shen, C. effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 2012, 45, 8933-8937.  doi: 10.1021/ma3014756

    16. [16]

      Natta, G.; Peraldo, M.; Corradini, P. Smectic mesomorphic form of isotactic polypropylene. Rend. Accad. Naz. Lincei 1959, 26, 14-17.

    17. [17]

      Natta, G.; Corradini, P. Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl. 1960, 15, 40-51.  doi: 10.1007/BF02731859

    18. [18]

      Farrow, G. Measurement of the smectic content in undrawn polypropylene filaments. J. Appl. Polym. Sci. 1965, 9, 1227-1232.  doi: 10.1002/app.1965.070090404

    19. [19]

      Miller, R. L. On the existence of near-range order in isotactic polypropylenes. Polymer, 1960, 1, 135-143.  doi: 10.1016/0032-3861(60)90021-5

    20. [20]

      Hosemann, R. Paracrystalline fine structure of natural and synthetic proteins. Visual method for the determination of the oscillation tensors of the cell edges. Acta Crystallogr. 1951, 4, 520-530.

    21. [21]

      Bodor, G.; Grell, M.; Kallo, A. Determination of the crystallinity of polypropylene. Faserforsch Textiltech. 1964, 15, 527-532.

    22. [22]

      Grebowicz, J.; Lau, S. F.; Wunderlich, B. The thermal properties of polypropylene. J. Polym. Sci. Part C: Polym. Sym. 1984, 71, 19-37.

    23. [23]

      Corradini, P.; Petraccone, V.; De Rosa, C.; Guerra, G. On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 1986, 19, 2699-2703.  doi: 10.1021/ma00165a006

    24. [24]

      Qiu, J.; Wang, Z.; Yang, L.; Zhao, J.; Niu, Y.; Hsiao, B. S. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 2007, 48, 6934-6947.  doi: 10.1016/j.polymer.2007.08.066

    25. [25]

      Koerner, H.; Luo, Y.; Li, X.; Cohen, C.; Hedden, R. C.; Ober, C. K. Structural studies of extension-induced mesophase formation in poly(diethylsiloxane) elastomers: In situ synchrotron WAXS and SAXS. Macromolecules 2003, 36, 1975-1981.  doi: 10.1021/ma020856j

    26. [26]

      Ran, S.; Wang, Z.; Burger, C.; Chu, B.; Hsiao, B. S. Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film. Macromolecules 2002, 35, 10102-10107.  doi: 10.1021/ma021252i

    27. [27]

      Carr, P. L.; Nicholson, T. M.; Ward, I. M. Mesophase structures in poly(ethylene terephthalate), poly(ethylene naphthalate) and poly(ethylene naphthalate bibenzoate). Polym. Adv. Technol. 1997, 8, 592-600.  doi: 10.1002/(ISSN)1099-1581

    28. [28]

      García Gutiérrez, M. C.; Karger-Kocsis, J.; Riekel, C. Cold drawing-induced mesophase in amorphous poly(ethylene naphthalate) revealed by X-ray microdiffraction, Macromolecules 2002, 35, 7320-7325.  doi: 10.1021/ma020468h

    29. [29]

      Dorgan, J. R.; Lehermeier, H. J.; Palade, L.; Cicero, Polylactic acid: Properties and prospects of an environmentally benign plastic from renewable resources, Macromol. Symp. 2001, 175, 145-149.

    30. [30]

      Gross, R. A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803-807.  doi: 10.1126/science.297.5582.803

    31. [31]

      Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34, 605-640.  doi: 10.1016/j.progpolymsci.2009.01.003

    32. [32]

      De Santis, P.; Kovacs, J. Molecular conformation of poly(S‐lactic acid). Biopolymers 1968, 6, 299-306.  doi: 10.1002/(ISSN)1097-0282

    33. [33]

      Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 1990, 23, 634-642.  doi: 10.1021/ma00204a041

    34. [34]

      Kalb, B.; Pennings, A. J. General crystallization behaviour of poly(L-lactic acid). Polymer 1980, 21, 607-612.  doi: 10.1016/0032-3861(80)90315-8

    35. [35]

      Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. The frustrated structure of poly (L-lactide). Polymer 2000, 41, 8921-8930.  doi: 10.1016/S0032-3861(00)00235-4

    36. [36]

      Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909-8919.  doi: 10.1016/S0032-3861(00)00234-2

    37. [37]

      Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly (L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012-8021.  doi: 10.1021/ma051232r

    38. [38]

      Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 2010, 43, 1488-1498.  doi: 10.1021/ma9024366

    39. [39]

      Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Rochas, C. New insights on the strain-induced mesophase of poly(D, L-lactide): In situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 2010, 43, 7228-7237.  doi: 10.1021/ma101430c

    40. [40]

      Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA-PEG-PLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43, 4240-4246.  doi: 10.1021/ma100301h

    41. [41]

      Wasanasuk, K.; Tashiro, K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 2011, 44, 9650-9660.  doi: 10.1021/ma2017666

    42. [42]

      Wasanasuk, K.; Tashiro, K. Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(L-lactic acid). Macromolecules 2012, 45, 7019-7026.  doi: 10.1021/ma3010982

    43. [43]

      Lv, R.; Na, B.; Tian, N.; Zou, S.; Li, Z.; Jiang, S. Mesophase formation and its thermal transition in the stretched glassy polylactide revealed by infrared spectroscopy. Polymer 2011, 52, 4979-4984.  doi: 10.1016/j.polymer.2011.08.023

    44. [44]

      Hu, J.; Zhang, T.; Gu, M.; Chen, X.; Zhang, J. Spectroscopic analysis on cold drawing-induced PLLA mesophase. Polymer, 2012, 53, 4922-4926.  doi: 10.1016/j.polymer.2012.09.012

  • 加载中
    1. [1]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    2. [2]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    3. [3]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    4. [4]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    5. [5]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    6. [6]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    7. [7]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    8. [8]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    9. [9]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    10. [10]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    11. [11]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    12. [12]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    13. [13]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    14. [14]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    15. [15]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    16. [16]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    17. [17]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    20. [20]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

Metrics
  • PDF Downloads(0)
  • Abstract views(815)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return