Citation: Shao-Fei Song, Xiao-Yu Liu, Hao Zhang, Zhi-Sheng Fu, Jun-Ting Xu, Zhi-Qiang Fan. Comparative Studies on Properties of Polymers with Bulky Side Groups Synthesized by Cyclopolymerization of α,ω-Dienes and α,ω-Diynes[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 149-156. doi: 10.1007/s10118-019-2183-6 shu

Comparative Studies on Properties of Polymers with Bulky Side Groups Synthesized by Cyclopolymerization of α,ω-Dienes and α,ω-Diynes

  • Corresponding author: Zhi-Qiang Fan, fanzq@zju.edu.cn
  • † These authors equally contributed to this work.
  • Received Date: 18 July 2018
    Revised Date: 11 August 2018
    Accepted Date: 19 August 2018
    Available Online: 10 September 2018

  • Four polymers containing five-membered rings in the main chain, with or without conjugation structure along the backbone and with or without conjugated pendent groups, were designed and synthesized by metathesis cyclopolymerization of functionalized α,ω-diynes, and cyclopolymerization of functionalized α,ω-dienes catalyzed by the α-diimine palladium-based catalyst, respectively. High to moderate monomer conversions were achieved. Chain structure, molecular weight, and molecular weight distribution (MWD) of the cyclopolymerization products were characterized by 1H-, 13C-NMR, FTIR, and GPC. The polymers showed regular main chain structures, moderately high molecular weight, and narrow MWD. Thermal properties and chain stacking behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) as well as atomic force microscopy (AFM). The polymer with conjugation system in both the backbone and the pendent groups exhibited UV-Vis absorption at a much longer wavelength than those with the conjugation only in the backbone or only in the side groups. The polymers with conjugated backbone need more space for chain stacking, and the conjugated backbone causes enhanced size of polymer particles assembled from solution. The results showed that primary microstructures of the polymer exerted significant influences on the physical properties.
  • 加载中
    1. [1]

      Boaen, N. K.; Hillmyer, M. A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 2005, 34, 267-275  doi: 10.1039/b311405h

    2. [2]

      Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Synthesis of functional 'polyolefins': State of the art and remaining challenges. Chem. Soc. Rev. 2013, 42, 5809-5832  doi: 10.1039/c3cs60032g

    3. [3]

      de Silva, L. C.; Rojas, G.; Schulz, M. D.; Wagener, K. B. Acyclic diene metathesis polymerization: History, methods and applications. Prog. Polym. Sci. 2017, 69, 79-107  doi: 10.1016/j.progpolymsci.2016.12.001

    4. [4]

      Grubbs, R. H. Olefin metathesis. Tetrahedron 2004, 60, 7117-7140  doi: 10.1016/j.tet.2004.05.124

    5. [5]

      Hillmyer, M. A.; Grubbs, R. H. Chain transfer in the ring-opening metathesis polymerization of cyclooctadiene using discrete metal alkylidenes. Macromolecules 1995, 28, 8662-8667  doi: 10.1021/ma00129a027

    6. [6]

      Hillmyer, M. A.; Nguyen, S. T.; Grubbs, R. H. Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules 1997, 30, 718-721  doi: 10.1021/ma961316n

    7. [7]

      Sworen, J. C.; Smith, J. A.; Wagener, K. B.; Baugh, L. S.; Rucker, S. P. Modeling random methyl branching in ethylene/propylene copolymers using metathesis chemistry: Synthesis and thermal behavior. J. Am. Chem. Soc. 2003, 125, 2228-2240  doi: 10.1021/ja020862v

    8. [8]

      Xie, M.; Han, H.; Jin, O.; Du, C. Synthesis of Ionic Hybrid polymers with polyhedral oligomeric silsesquioxane pendant by acyclic diene metathesis polymerization and characterization. Acta Chim. Sin. 2013, 71, 1441-1445  doi: 10.6023/A13040377

    9. [9]

      Song, W.; Wu, J.; Yang, G.; Han, H.; Xie, M.; Liao, X. Precisely designed perylene bisimide-substituted polyethylene with a high glass transition temperature and an ordered architecture. RSC Adv. 2015, 5, 68765-68772  doi: 10.1039/C5RA10049F

    10. [10]

      Ding, L.; Yang, G.; Xie, M.; Gao, D.; Yu, J.; Zhang, Y. More insight into tandem ROMP and ADMET polymerization for yielding reactive long-chain highly branched polymers and their transformation to functional polymer nanoparticles. Polymer 2012, 53, 333-341  doi: 10.1016/j.polymer.2011.12.022

    11. [11]

      Li, Z. L.; Lv, A.; Li, L.; Deng, X. X.; Zhang, L. J.; Du, F. S.; Li, Z. C. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: Synthesis, characterization, and thermal property. Polymer 2013, 54, 3841-3849  doi: 10.1016/j.polymer.2013.05.037

    12. [12]

      Song, S. F.; Guo, W. Q.; Zou, S. F.; Fu, Z. S.; Xu, J. T.; Fan, Z. Q. Polyethylene containing aliphatic ring and aromatic ring defects in the main chain: Synthesis via ADMET and comparisons of thermal properties and crystalline structure. Polymer 2016, 107, 113-121  doi: 10.1016/j.polymer.2016.11.017

    13. [13]

      Song, S. F.; He, F.; Fu, Z. S.; Xu, J. T.; Fan, Z. Q. Precision ADMET polyolefins containing dithiane: Synthesis, thermal properties and macromolecular transformation. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2468-2475  doi: 10.1002/pola.v54.16

    14. [14]

      Teo, Y. C.; Xia, Y. Importance of macromonomer quality in the ring-opening metathesis polymerization of macromonomers. Macromolecules 2015, 48, 5656-5662  doi: 10.1021/acs.macromol.5b01176

    15. [15]

      Zou, L.; Long, M.; Zhou, H.; Zhu, W.; Zhang, K.; Chen, Y.; Xi, F. C(sp3)-C(sp3) coupling polymerization of alkyl dibromides for preparation of polymers with precisely located phenyl pendants. Polymer 2015, 64, 196-201  doi: 10.1016/j.polymer.2015.02.037

    16. [16]

      Mayershofer, M. G.; Nuyken, O.; Buchmeiser, M. R. Bi- and trinuclear ruthenium alkylidene triggered cyclopolymerization of 1, 6-heptadiynes: Access to An-X-An block and (An)3X tristar copolymers. Macromolecules 2006, 39, 3484-3493  doi: 10.1021/ma052510p

    17. [17]

      Vygodskii, Y. S.; Shaplov, A. S.; Lozinskaya, E. I.; Vlasov, P. S.; Malyshkina, I. A.; Gavrilova, N. D.; Kumar, P. S.; Buchmeiser, M. R. Cyclopolymerization of N, N-dipropargylamines and N, N-dipropargyl ammonium salts. Macromolecules 2008, 41, 1919-1928  doi: 10.1021/ma7022777

    18. [18]

      Santhosh, P.; Wurst, K.; Buchmeiser, M. R. Factors relevant for the regioselective cyclopolymerization of 1, 6-heptadiynes, N, N-dipropargylamines, N, N-dipropargylammonium salts, and dipropargyl ethers by RuIV-alkylidene-based metathesis initiators. J. Am. Chem. Soc. 2009, 131, 387-395  doi: 10.1021/ja804563t

    19. [19]

      Kang, E. H.; Lee, I. S.; Choi, T. L. Ultrafast cyclopolymerization for polyene synthesis: Living polymerization to dendronized polymers. J. Am. Chem. Soc. 2011, 133, 11904-11907  doi: 10.1021/ja204309d

    20. [20]

      Naumann, S.; Unold, J.; Frey, W.; Buchmeiser, M. R. Regioselective cyclopolymerization of 1, 7-Octadiynes. Macromolecules 2011, 44, 8380-8387  doi: 10.1021/ma201749n

    21. [21]

      Kang, E. H.; Yu, S. Y.; Lee, I. S.; Park, S. E.; Choi, T. L. Strategies to enhance cyclopolymerization using third-generation Grubbs catalyst. J. Am. Chem. Soc. 2014, 136, 10508-10514  doi: 10.1021/ja505471u

    22. [22]

      Song, W.; Han, H.; Liao, X.; Sun, R.; Wu, J.; Xie, M. Metathesis cyclopolymerization of imidazolium-functionalized 1, 6-heptadiyne toward polyacetylene ionomer. Macromolecules 2014, 47, 6181-6188  doi: 10.1021/ma501217b

    23. [23]

      Song, W.; Han, H.; Wu, J.; Xie, M. Ladder-like polyacetylene with excellent optoelectronic properties and regular architecture. Chem. Commun. 2014, 50, 12899-12902  doi: 10.1039/C4CC05524A

    24. [24]

      Song, W.; Han, H.; Wu, J.; Xie, M. A bridge-like polymer synthesized by tandem metathesis cyclopolymerization and acyclic diene metathesis polymerization. Polym. Chem. 2015, 6, 1118-1126  doi: 10.1039/C4PY01229A

    25. [25]

      Guo, M.; Sun, R.; Han, H.; Wu, J.; Xie, M.; Liao, X. Metathesis cyclopolymerization of 1, 6-heptadiyne derivative toward triphenylamine-functionalized polyacetylene with excellent optoelectronic properties and nanocylinder morphology. Macromolecules 2015, 48, 2378-2387  doi: 10.1021/acs.macromol.5b00379

    26. [26]

      Kang, E. H.; Kang, C.; Yang, S.; Oks, E.; Choi, T. L. Mechanistic investigations on the competition between the cyclopolymerization and [2 + 2 + 2] cycloaddition of 1,6-heptadiyne derivatives using second-generation Grubbs catalysts. Macromolecules 2016, 49, 6240-6250  doi: 10.1021/acs.macromol.6b01110

    27. [27]

      Jung, K.; Kang, E. H.; Sohn, J. H.; Choi, T. L. Highly β-selective cyclopolymerization of 1, 6-heptadiynes and ring-closing enyne metathesis reaction using Grubbs Z-selective catalyst: Unprecedented regioselectivity for Ru-based catalysts. J. Am. Chem. Soc. 2016, 138, 11227-11233  doi: 10.1021/jacs.6b05572

    28. [28]

      Song, J. A.; Choi, T. L. Seven-membered ring-forming cyclopolymerization of 1, 8-nonadiyne derivatives using Grubbs catalysts: Rational design of monomers and insights into the mechanism for olefin metathesis polymerizations. Macromolecules 2017, 50, 2724-2735  doi: 10.1021/acs.macromol.7b00606

    29. [29]

      Kang, C.; Kang, E. H.; Choi, T. L. Successful cyclopolymerization of 1, 6-heptadiynes using first-generation Grubbs catalyst twenty years after its invention: Revealing a comprehensive picture of cyclopolymerization using Grubbs catalysts. Macromolecules 2017, 50, 3153-3163  doi: 10.1021/acs.macromol.7b00488

    30. [30]

      Yang, S.; Shin, S.; Choi, I.; Lee, J.; Choi, T. L. Direct formation of large-area 2D nanosheets from fluorescent semiconducting homopolymer with orthorhombic crystalline orientation. J. Am. Chem. Soc. 2017, 139, 3082-3088  doi: 10.1021/jacs.6b12378

    31. [31]

      Kang, C.; Park, H.; Lee, J.; Choi, T. L. Cascade polymerization via controlled tandem olefin metathesis/metallotropic 1, 3-shift reactions for the synthesis of fully conjugated polyenynes. J. Am. Chem. Soc. 2017, 139, 11309-11312  doi: 10.1021/jacs.7b04913

    32. [32]

      Ivin, K. J.; Mol, J. C. in Olefin metathesis and metathesis polymerization. Academic Press: San Diego, CA, 1997, 397–410

    33. [33]

      Yamazaki, M. Industrialization and application development of cyclo-olefin polymer. J. Mol. Catal. A: Chem. 2004, 213, 81-87  doi: 10.1016/j.molcata.2003.10.058

    34. [34]

      Janiak, C.; Lassahn, P. G. The vinyl homopolymerization of norbornene. Macromol. Rapid Commun. 2001, 22, 479-492  doi: 10.1002/(ISSN)1521-3927

    35. [35]

      Kesti, M. R.; Coates, G. W.; Waymouth, R. M. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes. J. Am. Chem. Soc. 1992, 114, 9679-9680  doi: 10.1021/ja00050a069

    36. [36]

      Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. Ruthenium(II)-catalyzed isomer-selective cyclization of 1, 6-dienes leading to exo-methylenecyclopentanes: Unprecedented cycloisomerization mechanism involving ruthenacyclopentane(hydrido) intermediate. J. Am. Chem. Soc. 2001, 123, 6372-6380  doi: 10.1021/ja010134s

    37. [37]

      Park, S.; Takeuchi, D.; Osakada, K. Pd complex-promoted cyclopolymerization of functionalized α, ω-dienes and copolymerization with ethylene to afford polymers with cyclic repeating units. J. Am. Chem. Soc. 2006, 128, 3510-3511  doi: 10.1021/ja058408p

    38. [38]

      Takeuchi, D.; Matsuura, R.; Park, S.; Osakada, K. Cyclopolymerization of 1, 6-heptadienes catalyzed by iron and cobalt complexes: Synthesis of polymers with trans- or cis-fused 1, 2-cyclopentanediyl groups depending on the catalyst. J. Am. Chem. Soc. 2007, 129, 7002-7003  doi: 10.1021/ja0718568

    39. [39]

      Takeuchi, D.; Fukuda, Y.; Park, S.; Osakada, K. Cyclopolymerization of 9, 9-diallylfluorene promoted by Ni complexes. Stereoselective formation of six- and five-membered rings during the polymer growth. Macromolecules 2009, 42, 5909-5912

    40. [40]

      Takeuchi, S.; Matsuura, R.; Fukuda, Y.; Osakada, K. Selective cyclopolymerization of α, ω-dienes and copolymerization with ethylene catalyzed by Fe and Co complexes. Dalton Trans. 2009, 8955-8962

    41. [41]

      Okada, T.; Takeuchi, D.; Osakada, K. Cyclopolymerization of monoterminal 1, 6-dienes catalyzed by Pd complexes. Macromolecules 2010, 43, 7998-8006  doi: 10.1021/ma101146j

    42. [42]

      Takeuchi, D. Novel controlled polymerization of cyclo-olefins, dienes, and trienes by utilizing reaction properties of late transition metals. Macromol. Chem. Phys. 2011, 212, 1545-1551  doi: 10.1002/macp.v212.15

    43. [43]

      Motokuni, K.; Takeuchi, D.; Osakada, K. Double cyclopolymerization of monoterminal trienes using Pd catalysis. Polymers containing functionallized cyclic groups with a regulated sequence. Macromolecules 2014, 47, 6522-6526

    44. [44]

      Takeuchi, D.; Watanabe, K.; Sogo, K.; Osakada, K. Polymerization of methylenecyclohexanes catalyzed by diimine-Pd complex. Polymers having trans- or cis-1, 4-and trans-1, 3-cyclohexylene groups. Organometallics 2015, 34, 3007-3011  doi: 10.1021/acs.organomet.5b00313

    45. [45]

      Takeuchi, D.; Watanabe, K.; Osakada, K. Synthesis of polyketones containing substituted six-membered rings via Pd-catalyzed copolymerization of methylenecyclohexanes with carbon monoxide. Macromolecules 2015, 48, 6745-6749  doi: 10.1021/acs.macromol.5b01458

    46. [46]

      Motokuni, K.; Haupler, B.; Burges, R.; Hager, M. D.; Schubert, U. S. Synthesis and electrochemical properties of novel redox-active polymers with anthraquinone moieties by Pd-catalyzed cyclopolymerization of dienes. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2184-2190  doi: 10.1002/pola.v54.14

    47. [47]

      Kang, S. K.; Baik, T. G.; Kulak, A. N.; Ha, Y. H.; Lim, Y.; Park, J. Palladium-catalyzed carbocyclization/silastannylation and distannylation of bis(allenes). J. Am. Chem. Soc. 2000, 122, 11529-11530  doi: 10.1021/ja001597l

    48. [48]

      Aitken, B. S.; Wieruszewski, P. M.; Graham, K. R.; Reynolds, J. R.; Wagener, K. B. Perfectly regioregular electroactive polyolefins: Impact of inter-chromophore distance on PLED EQE. Macromolecules 2012, 45, 705-712  doi: 10.1021/ma202409k

    49. [49]

      Halbach, T. S.; Krause, J. O.; Nuyken, O.; Buchmeiser, M. R. Stereoselective cyclopolymerization of polar 1, 6-heptadiynes by novel, tailor-made ruthenium-based metathesis catalysts. Macromol. Rapid Commun. 2005, 26, 784-790  doi: 10.1002/(ISSN)1521-3927

    50. [50]

      Kim, S. H.; Kim, Y. H.; Cho, H. N.; Kwon, S. K.; Kim, H. K.; Choi, S. K. Unusual optical absorption behavior, polymer structure, and air stability of poly(1, 6-heptadiyne)s with substituents at the 4-position. Macromolecules 1996, 29, 5422-5426  doi: 10.1021/ma9507103

    51. [51]

      Rojas, G.; Inci, B.; Wei, Y.; Wagener, K. B. Precision polyethylene: Changes in morphology as a function of alkyl branch size. J. Am. Chem. Soc. 2009, 131, 17376-17386  doi: 10.1021/ja907521p

  • 加载中
    1. [1]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    2. [2]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    3. [3]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    9. [9]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    10. [10]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    11. [11]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    17. [17]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    18. [18]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    19. [19]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return