Citation: Xian-Jing Zhou, Hai-Peng Lu, Ling-Li Kong, Dong Zhang, Wei Zhang, Jing-Jing Nie, Jia-Yin Yuan, Bin-Yang Du, Xin-Ping Wang. Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 235-242. doi: 10.1007/s10118-019-2182-7 shu

Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst

  • Corresponding author: Bin-Yang Du, duby@zju.edu.cn Xin-Ping Wang, wxinping@yahoo.com
  • Received Date: 22 July 2018
    Revised Date: 13 August 2018
    Accepted Date: 14 August 2018
    Available Online: 30 August 2018

  • Microgels with a thermo-sensitive poly(N-isopropylacrylamide) (polyNIPAm) backbone and bis-imidazolium (VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microgels were converted to nanoreactors, denoted as Au@PNI MGs, upon generation and immobilization of gold nanoparticles (Au NPs) of 5–8 nm in size into poly(NIPAm-co-VIM). The content of Au NPs in microgels could be regulated by controlling the 1,6-dibromohexane/vinylimidazole molar ratio in the quaternization reaction. The microgel-based nanoreactors were morphologically spherical and uniform in size, and presented reversible thermo-sensitive behavior with volume phase transition temperatures (VPTTs) at 39–40 °C. The Au@PNI MGs were used for the reduction of 4-nitrophenol, of which the catalytic activity could be modulated by temperature.
  • 加载中
    1. [1]

      Corma, A.; Serna, P.; Concepcion, P.; Juan Calvino, J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748-8753.  doi: 10.1021/ja800959g

    2. [2]

      Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125-2130.  doi: 10.1039/C3NR04715F

    3. [3]

      Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal., B 2015, 162, 372-380.  doi: 10.1016/j.apcatb.2014.07.009

    4. [4]

      Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287, 114-136.  doi: 10.1016/j.ccr.2015.01.002

    5. [5]

      Guo, M.; He, J.; Li, Y.; Ma, S.; Sun, X. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater. 2016, 310, 89-97.  doi: 10.1016/j.jhazmat.2016.02.016

    6. [6]

      Chang, Y.-C.; Chen, D.-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664-669.  doi: 10.1016/j.jhazmat.2008.10.034

    7. [7]

      Zhang, W.; Tan, F.; Wang, W.; Qiu, X.; Qiao, X.; Chen, J. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater. 2012, 217, 36-42.

    8. [8]

      Ghosh, S. K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal., A 2004, 268, 61-66.  doi: 10.1016/j.apcata.2004.03.017

    9. [9]

      Behrens, S.; Heyman, A.; Maul, R.; Essig, S.; Steigerwald, S.; Quintilla, A.; Wenzel, W.; Buerck, J.; Dgany, O.; Shoseyov, O. Constrained Synthesis and Organization of Catalytically Active Metal Nanoparticles by Self-Assembled Protein Templates. Adv. Mater. 2009, 21, 3515-3519.

    10. [10]

      Saha, A.; Ranu, B. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem. 2008, 73, 6867-6870.  doi: 10.1021/jo800863m

    11. [11]

      Wu, Y.; Wen, M.; Wu, Q.; Fang, H. Ni/graphene Nanostructure and Its Electron-Enhanced Catalytic Action for Hydrogenation Reaction of Nitrophenol. J. Phys. Chem. C 2014, 118, 6307-6313.  doi: 10.1021/jp412711b

    12. [12]

      Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. 2012, 48, 7982-7984.  doi: 10.1039/c2cc30999h

    13. [13]

      Shen, W.; Qu, Y.; Pei, X.; Li, S.; You, S.; Wang, J.; Zhang, Z.; Zhou, J. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp WL-Au. J. Hazard. Mater. 2017, 321, 299-306.  doi: 10.1016/j.jhazmat.2016.07.051

    14. [14]

      Wu, S.; Tseng, C.; Lin, Y.; Lin, C.; Hung, Y.; Mou, C. Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. J. Mater. Chem. 2011, 21, 789-794.

    15. [15]

      Hu, H.; Xin, J. H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review. J. Mater. Chem. A 2015, 3, 11157-11182.  doi: 10.1039/C5TA00753D

    16. [16]

      Ballarin, B.; Cassani, M. C.; Tonelli, D.; Boanini, E.; Albonetti, S.; Blosi, M.; Gazzano, M. Gold Nanoparticle-Containing Membranes from in Situ Reduction of a Gold(III)-Aminoethylimidazolium Aurate Salt. J. Phys. Chem. C 2010, 114, 9693-9701.

    17. [17]

      Jiang, Z. J.; Liu, C. Y.; Sun, L. W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 2005, 109, 1730-1735.  doi: 10.1021/jp046032g

    18. [18]

      Li, M.; Chen, G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale 2013, 5, 11919-11927.  doi: 10.1039/c3nr03521b

    19. [19]

      Plamper, F. A.; Richtering, W. Functional Microgels and Microgel Systems. Acc. Chem. Res. 2017, 50, 131-140.  doi: 10.1021/acs.accounts.6b00544

    20. [20]

      Xue, J.; Zhang, Z.; Nie, J.; Du, B. Formation of Microgels by Utilizing the Reactivity of Catechols with Radicals. Macromolecules 2017, 50, 5285-5292.  doi: 10.1021/acs.macromol.7b01304

    21. [21]

      Cao, Q. C.; Wang, X.; Wu, D. C. Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Chinese J. Polym. Sci. 2018, 36, 8-17.  doi: 10.1007/s10118-018-2061-7

    22. [22]

      Lyon, L. A.; Fernandez-Nieves, A. The Polymer/Colloid Duality of Microgel Suspensions. Annu. Rev. Phys. Chem. 2012, 63, 25-43.  doi: 10.1146/annurev-physchem-032511-143735

    23. [23]

      Li, Z. B.; Xiang, Y. H.; Zhou, X. J.; Nie, J. J.; Peng, M.; Du, B. Y. Thermo-sensitive poly(DEGMMA-co-MEA) microgels: Synthesis, characterization and interfacial interaction with adsorbed protein layer. Chinese J. Polym. Sci. 2015, 33, 1516-1526.  doi: 10.1007/s10118-015-1694-z

    24. [24]

      Deshmukh, O. S.; van den Ende, D.; Stuart, M. C.; Mugele, F.; Duits, M. H. G. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 2015, 222, 215-227.  doi: 10.1016/j.cis.2014.09.003

    25. [25]

      Hu, W. T.; Yang, H.; Cheng, H.; Hu, H. Q. Morphology Evolution of Polystyrene-core/Poly(N-isopropylacrylamide)-shell Microgel Synthesized by One-pot Polymerization. Chinese J. Polym. Sci. 2017, 35, 1156-1164.  doi: 10.1007/s10118-017-1969-7

    26. [26]

      Weng, J. Y.; Tang, Z.; Guan, Y.; Zhu, X. X.; Zhang, Y. J. Assembly of highly ordered 2D arrays of silver-PNIPAM hybrid microgels. Chinese J. Polym. Sci. 2017, 35, 1212-1221.  doi: 10.1007/s10118-017-1962-1

    27. [27]

      Zhou, X.; Nie, J.; Du, B. Functionalized Ionic Microgel Sensor Array for Colorimetric Detection and Discrimination of Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 20913-20921.  doi: 10.1021/acsami.7b06337

    28. [28]

      Xue, B.; Kozlovskaya, V.; Kharlampieva, E. Shaped stimuli-responsive hydrogel particles: syntheses, properties and biological responses. J. Mater. Chem. B 2017, 5, 9-35.  doi: 10.1039/C6TB02746F

    29. [29]

      Zhou, X.; Qi, Y.; Zhang, Z.; Nie, J.; Huang, Y.; Du, B. Novel Engineered Microgels with Amphipathic Network Structures for Simultaneous Tumor and Inflammation Depression. ACS Appl. Mater. Interfaces 2018, 10, 10501-10512.  doi: 10.1021/acsami.8b02382

    30. [30]

      Zhou, X.; Yang, Q.; Li, J.; Nie, J.; Tang, G.; Du, B. Thermo-sensitive poly(VCL-4VP-NVP) ionic microgels: synthesis, cytotoxicity, hemocompatibility, and sustained release of anti-inflammatory drugs. Mater. Chem. Front. 2017, 1, 369-379.  doi: 10.1039/C6QM00046K

    31. [31]

      Saunders, B. R.; Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interface Sci. 1999, 80, 1-25.

    32. [32]

      Zhou, X.; Nie, J.; Xu, J.; Du, B. Thermo-sensitive ionic microgels via post quaternization cross-linking: fabrication, property, and potential application. Colloid Polym. Sci. 2015, 293, 2101-2111.  doi: 10.1007/s00396-015-3596-6

    33. [33]

      Zhou, X.; Zhou, Y.; Nie, J.; Ji, Z.; Xu, J.; Zhang, X.; Du, B. Thermosensitive Ionic Microgels via Surfactant-Free Emulsion Copolymerization and in Situ Quaternization Cross-Linking. ACS Appl. Mater. Interfaces 2014, 6, 4498-4513.  doi: 10.1021/am500291n

    34. [34]

      Srivastava, S. K.; Guix, M.; Schmidt, O. G. Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning. Nano Lett. 2016, 16, 817-821.  doi: 10.1021/acs.nanolett.5b05032

    35. [35]

      Patel, N.; Patton, B.; Zanchetta, C.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2008, 33, 287-292.  doi: 10.1016/j.ijhydene.2007.07.018

    36. [36]

      Turkevich, J.; Stevenson, P. C.; Hillier, J. A STUDY OF THE NUCLEATION AND GROWTH PROCESSES IN THE SYNTHESIS OF COLLOIDAL GOLD. Discuss. Faraday Soc. 1951, 55-75.

    37. [37]

      Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem., Int. Ed. 2006, 45, 813-816.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Yuan, J.; Wunder, S.; Warmuth, F.; Lu, Y. Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer 2012, 53, 43-49.  doi: 10.1016/j.polymer.2011.11.031

    39. [39]

      Pich, A. Z.; Adler, H.-J. P. Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym. Int. 2007, 56, 291-307.

    40. [40]

      Zhou, X.; Nie, J.; Wang, Q.; Du, B. Thermosensitive Ionic Microgels with pH Tunable Degradation via in Situ Quaternization Cross-Linking. Macromolecules 2015, 48, 3130-3139.  doi: 10.1021/acs.macromol.5b00482

    41. [41]

      Benee, L. S.; Snowden, M. J.; Chowdhry, B. Z. Novel gelling behavior of poly(N-isopropylacrylamide-co-vinyl laurate)microgel dispersions. Langmuir 2002, 18, 6025-6030.  doi: 10.1021/la025660r

    42. [42]

      Lu, Y.; Mei, Y.; Walker, R.; Ballauff, M.; Drechsler, M. 'Nano-tree' - type spherical polymer brush particles as templates for metallic nanoparticles. Polymer 2006, 47, 4985-4995.  doi: 10.1016/j.polymer.2006.05.027

    43. [43]

      Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catal. 2011, 1, 908-916.  doi: 10.1021/cs200208a

    44. [44]

      Wei, J.; Wang, H.; Deng, Y.; Sun, Z.; Shi, L.; Tu, B.; Luqman, M.; Zhao, D. Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. J. Am. Chem. Soc. 2011, 133, 20369-20377.  doi: 10.1021/ja207525e

    45. [45]

      Zhang, H.; Yang, X. L. Magnetic polymer microsphere stabilized gold nanocolloids as a facilely recoverable catalyst. Chinese J. Polym. Sci. 2011, 29, 342-351.  doi: 10.1007/s10118-011-1036-8

    46. [46]

      Lu, Y.; Yuan, J.; Polzer, F.; Drechsler, M.; Preussners, J. In Situ Growth of Catalytic Active Au - Pt Bimetallic Nanorods in Thermoresponsive Core - Shell Microgels. Acs Nano 2010, 4, 7078-7086.  doi: 10.1021/nn102622d

    47. [47]

      Bawane, S. P.; Sawant, S. B. Hydrogenation of p-nitrophenol to metol using Raney nickel catalyst: Reaction kinetics. Appl. Catal., A 2005, 293, 162-170.  doi: 10.1016/j.apcata.2005.07.004

    48. [48]

      Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114, 8814-8820.  doi: 10.1021/jp101125j

    49. [49]

      Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem. Mater. 2007, 19, 1062-1069.  doi: 10.1021/cm062554s

    50. [50]

      Dasog, M.; Hou, W.; Scott, R. W. J. Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts. Chem. Commun. 2011, 47, 8569-8571.  doi: 10.1039/c1cc11813g

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    8. [8]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    9. [9]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    10. [10]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    11. [11]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    12. [12]

      Yu YanJiawei SongDongdong LiuZihan LiuJialing ChengZhiyang ChenYanfang YangWeizhe JiangHongliang WangJun YeYuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736

    13. [13]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    14. [14]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    18. [18]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    19. [19]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    20. [20]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

Metrics
  • PDF Downloads(0)
  • Abstract views(782)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return