Citation: Yong Zhao, Hong Gao, Guo-Min Li, Fang-Fang Liu, Xue-Min Dai, Zhi-Xin Dong, Xue-Peng Qiu. Synthesis and AO Resistant Properties of Novel Polyimide Fibers Containing Phenylphosphine Oxide Groups in Main Chain[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 59-67. doi: 10.1007/s10118-019-2179-2 shu

Synthesis and AO Resistant Properties of Novel Polyimide Fibers Containing Phenylphosphine Oxide Groups in Main Chain

  • Corresponding author: Zhi-Xin Dong, zxdong@ciac.ac.cn Xue-Peng Qiu, xp_q@ciac.ac.cn
  • Received Date: 6 June 2018
    Revised Date: 21 July 2018
    Accepted Date: 6 August 2018
    Available Online: 7 September 2018

  • A series of co-polyimide (PI) fibers containing phenylphosphine oxide (PPO) group were synthesized by incorporating the bis(4-aminophenoxy) phenyl phosphine oxide (DAPOPPO) monomer into the PI molecular chain followed by dry-jet wet spinning. The effects of DAPOPPO molar content on the atomic oxygen (AO) resistance of the fibers were investigated systematically. When the AO fluence increased from 0 atoms·cm−2 to 3.2 × 1020 atoms·cm−2, the mass loss of the fibers showed the dependence on DAPOPPO molar content in co-PI fibers. The PI fiber containing 40% DAPOPPO showed lower mass loss compared to those containing 0% and 20% DAPOPPO. At higher AO fluence, the higher DAPOPPO content gave rise to dense carpet-like surface of fibers. XPS results indicated that the passivated phosphate layer was deposited on the fiber surface when exposed to AO, which effectively prevented fiber from AO erosion. With the DAPOPPO content increasing from 0% to 40%, the retentions of tensile strength and initial modulus for the fibers exhibited obvious growth from 44% to 68%, and 59% to 70%, after AO exposure with the fluence of 3.2 × 1020 atoms·cm−2. The excellent AO resistance benefits the fibers for application in low Earth orbit as flexible construction components.
  • 加载中
    1. [1]

      Fischer, H. R.; Tempelaars, K.; Kerpershoek, A.; Dingemans, T.; Iqbal, M.; Lonkhuyzen, H.V.; Iwanowsky, B.; Semprimoschnig, C. Development of flexible leo-resistant pi films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers. ACS Appl. Mater. Interfaces 2010, 2, 2218-2225.  doi: 10.1021/am100223v

    2. [2]

      Minton, T. K.; Wright, M. E.; Tomczak, S. J.; Marquez, S. A.; Shen, L.; Brunsvold, A. L.; Cooper, R.; Zhang, J.; Vij, V.; Guenthner, A. J.; Petteys, B. J. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces 2012, 4, 492-502.  doi: 10.1021/am201509n

    3. [3]

      Verker, R.; Grossman, E.; Eliaz, N. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 2009, 57, 1112-1119.  doi: 10.1016/j.actamat.2008.10.054

    4. [4]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.  doi: 10.1016/j.progpolymsci.2012.02.005

    5. [5]

      Sukhanova, T. E.; Baklagina, Y. G.; Kudryavtsev, V. V.; Maricheva, T. A.; Lednický, F. Morphology, deformation and failure behaviour of homo- and copolyimide fibres: 1. Fibres from 4,4′-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl) -pyrimidine (2,5PRM). Polymer 1999, 40, 6265-6276.

    6. [6]

      Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50-59.  doi: 10.1016/j.polymer.2017.11.015

    7. [7]

      Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties. Polymer 2013, 54, 1700-1708.  doi: 10.1016/j.polymer.2013.01.047

    8. [8]

      Dong, J.; Yin, C.; Zhao, X.; Li, Y.; Zhang, Q. High strength polyimide fibers with functionalized graphene. Polymer 2013, 54, 6415-6424.  doi: 10.1016/j.polymer.2013.09.035

    9. [9]

      Chernik, V. N.; Novikov, L. S.; Bondarenko, G. G.; Gaidar, A. I.; Smirnova, T. N. Study of polymeric fiber erosion under oxygen plasma beams. Bull. Russ. Acad. Sci.: Phys. 2010, 74, 268-271.  doi: 10.3103/S1062873810020346

    10. [10]

      Zhao, Y.; Li, G.; Dai, X.; Liu, F.; Dong, Z.; Qiu, X. AO-resistant properties of polyimide fibers containing phosphorous groups in main chains. Chinese J. Polym. Sci. 2016, 34, 1469-1478.  doi: 10.1007/s10118-016-1864-7

    11. [11]

      Liu, F.; Guo, H.; Zhao, Y.; Qiu, X.; Gao, L. Enhanced resistance to the atomic oxygen exposure of POSS/polyimide composite fibers with surface enrichment through wet spinning. Eur. Polym. J. 2018, 105, 115-125.  doi: 10.1016/j.eurpolymj.2018.05.022

    12. [12]

      Tennyson, R. C. Protective coatings for spacecraft materials. Sur. Coat. Tech. 1994, 68, 519-527.  doi: 10.1016/0257-8972(94)90211-9

    13. [13]

      Deepa, D.; Packirisamy, S.; Korulla, R. M.; Ninan K. N. Atomic oxygen resistant coating from poly(tetramethyldisilylene- co-styrene). J. Appl. Polym. Sci. 2004, 94, 2368-2375.  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Liu, B.; Ji, M.; Liu, J.; Fan, L.; Yang, S. Phenylphosphine oxide containing polyimide matrix resins for atomic oxygen-resistant fiber-reinforced composites. High. Perform. Polym. 2013, 25, 907-917.  doi: 10.1177/0954008313489716

    15. [15]

      Atar, N.; Grossman, E.; Gouzman, I.; Bolker, A.; Murray, V. J.; Marshall, B. C.; Qian, M.; Minton, T. K.; Hanein, Y. Atomic-oxygen-durable and electrically-conductive CNT- POSS-polyimide flexible films for space applications. ACS Appl. Mater. Interfaces 2015, 7, 12047-12056.  doi: 10.1021/acsami.5b02200

    16. [16]

      Watson, K. A.; Palmieri, F. L.; Connell, J. W. Space environmentally stable polyimides and copolyimides derived from [2,4-bis(3-aminophenoxy) phenyl]diphenylphosphine oxide. Macromolecules 2002, 35, 4968-4974.  doi: 10.1021/ma0201779

    17. [17]

      Connell, J. W.; Watson, K. A. High. Space environmentally stable polyimides and copolyimides derived from bis(3-aminophenyl)-3,5-di(trifluoromethyl) phenylphosphine oxide. Perform. Polym. 2001, 13, 23-34.  doi: 10.1088/0954-0083/13/1/303

    18. [18]

      Thompson, C. M.; Smith, J. G.; Connell, J. W. Polyimides prepared from 4,4′-(2-diphenylphosphinyl-1,4- phenylenedioxy)diphthalic anhydride for potential space applications. High. Perform. Polym. 2003, 15, 181-195.  doi: 10.1177/0954008303015002003

    19. [19]

      Connell, J. W.; Smith, J. G.; Hedrick, J. L. Oxygen plasma-resistant phenylphosphine oxide-containing polyimides and poly(arylene ether heterocycle)s: 2. Polymer 1995, 36, 13-19.  doi: 10.1016/0032-3861(95)90669-S

    20. [20]

      Smith, J. G.; Connell, J. W.; Hergenrother, P. M. Oxygen plasma resistant phenylphosphine oxide-containing poly(arylene ether)s. Polymer 1994, 35, 2834-2839.  doi: 10.1016/0032-3861(94)90314-X

    21. [21]

      Jeong, K. U.; Kim, J. J.; Yoon, T. H. Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer 2001, 42, 6019-6030.  doi: 10.1016/S0032-3861(01)00012-X

    22. [22]

      Zhu, Y.; Zhao, P.; Cai, X.; Meng, W.; Qing, F. Synthesis and characterization of novel fluorinated polyimides derived from bis[4-(4′-aminophenoxy)phenyl]-3,5-bis(trifluoromethyl)phenyl phosphine oxide. Polymer 2007, 48, 3116-3124.  doi: 10.1016/j.polymer.2007.03.057

    23. [23]

      Wei, J. H.; Gang, Z. X.; Ming, L. Q.; Rehman, S.; Wei, Z. H.; Dong, D. G.; Hai, C. C. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide. Polym. Sci. Ser. B 2014, 56, 788-798.  doi: 10.1134/S1560090414060086

    24. [24]

      Li, Z.; Liu, J.; Gao, Z.; Yin, Z.; Fan, L.; Yang, S. Organo-soluble and transparent polyimides containing phenylphosphine oxide and trifluoromethyl moiety: Synthesis and characterization. Eur. Polym. J. 2009, 45, 1139-1148.  doi: 10.1016/j.eurpolymj.2009.01.017

    25. [25]

      Zhao, Y.; Dong, Z.; Li, G.; Dai, X.; Liu, F.; Ma, X.; Qiu, X. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains. RSC Adv. 2017, 7, 5437-5444.  doi: 10.1039/C6RA26941A

    26. [26]

      Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482-42494.  doi: 10.1039/C6RA02344D

    27. [27]

      Zhao, Y.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the side chain (DATPPO). Chinese J. Polym. Sci. 2017, 35, 372-385.  doi: 10.1007/s10118-017-1896-7

    28. [28]

      Liu, Y. L.; Hsiue, G. H.; Lee, R. H.; Chiu, Y. S. Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 1997, 63, 895-901.  doi: 10.1002/(ISSN)1097-4628

    29. [29]

      Ding, X.; Qiu, X.; Ma, X.; Li, G.; Gao, L. Preparations and properties of the phosphoruscontaining polyimide fibers. Chem. J. Chinese U. 2013, 11, 2650-2654.

    30. [30]

      Miyazaki, E.; Tagawa, M.; Yokota, K.; Yokota, R.; Kimoto, Y.; Ishizawa, J. Investigation into tolerance of polysiloxane- block-polyimide film against atomic oxygen. Acta Astronaut. 2010, 66, 922-928.  doi: 10.1016/j.actaastro.2009.09.002

    31. [31]

      Shimamura, H.; Nakamura, T. Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym. Degrad. Stab. 2009, 94, 1389-1396.  doi: 10.1016/j.polymdegradstab.2009.05.013

    32. [32]

      Duo, S. W.; Li, M. S.; Zhou, Y. C.; Tong, J. Y.; Sun, G. Investigation of surface reaction and degradation mechanism of Kapton during atomic oxygen exposure. J. Mater. Sci. Technol. 2003, 19, 535-539.  doi: 10.1179/026708303225010777

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    3. [3]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    4. [4]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    5. [5]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    6. [6]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    7. [7]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    8. [8]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    9. [9]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    10. [10]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    13. [13]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    14. [14]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    15. [15]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    19. [19]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    20. [20]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return