Citation: Jin Chen, Jiong-Hua Xiang. Dynamic Monte Carlo Simulation on Polymerization of Encapsulant[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 157-163. doi: 10.1007/s10118-019-2176-5 shu

Dynamic Monte Carlo Simulation on Polymerization of Encapsulant

  • Corresponding author: Jin Chen, 
  • Received Date: 24 June 2018
    Revised Date: 24 June 2018
    Accepted Date: 18 July 2018
    Available Online: 3 August 2018

  • Based on the preparative experiments of the light-emitting diode (LED) encapsulant, three types of monomer models with different functional groups are carried out to study the polymerization process by dynamic Monte Carlo (DMC) simulation and bond fluctuation model (BFM). We calculate the degree of polymerization, the radius of gyration and the frequency of void spheres to discuss the polymerization process, the molecular size and the spatial distribution at different volume fractions and proportions. Our results are in agreement with Grest’s decay rate and Flory’s scale law. Simulations show that the polymerization process depends on the appropriate volume fraction and proportion exceedingly, and the volume contraction in the polymerization process can also be observed in this study. These investigations could provide some insights into the understanding of the polymerization process of the encapsulant and help us to adjust the parameters in later experiments.
  • 加载中
    1. [1]

      Patel, P. ‘Solid-State Lighting: The future looks bright’ MRS Bull. 2011, 36, 678-680.  doi: 10.1557/mrs.2011.215

    2. [2]

      Tsami, A.; Yang, X.-H.; Galbrecht, F.; Farrell, T.; Li, H.; Adamczyk, S.; Heiderhoff, R.; Balk, L. J.; Neher, D.; Holder, E. ‘Random fluorene copolymers with on-chain quinoxaline acceptor units’ J. Polym. Sci. Pol. Chem. 2007, 45, 4773-4785.  doi: 10.1002/(ISSN)1099-0518

    3. [3]

      Kanelidis, I.; Ren, Y.; Lesnyak, V.; Gasse, J.-C.; Frahm, R.; Eychmüller, A.; Holder, E. ‘Arylamino-functionalized fluorene- and carbazole-based copolymers: Color-tuning their CdTe nanocrystal composites from red to white’ J. Polym. Sci. Pol. Chem. 2011, 49, 392-402.  doi: 10.1002/pola.v49.2

    4. [4]

      Tao, P.; Li, Y.; Siegel, R. W.; Schadler, L. S. ‘Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation’ J. Appl. Polym. Sci. 2013, 130, 3785-3793.  doi: 10.1002/app.39652

    5. [5]

      Narendran, N.; Gu, Y.; Freyssinier, J. P.; Yu, H.; Deng, L. ‘Solid-state lighting: Failure analysis of white LEDs’ J. Cryst. Growth 2004, 268, 449-456.  doi: 10.1016/j.jcrysgro.2004.04.071

    6. [6]

      Narendran, N.; Gu, Y. ‘Life of LED-based white light sources’ J. Disp. Technol. 2005, 1, 167-171.  doi: 10.1109/JDT.2005.852510

    7. [7]

      Chhajed, S.; Lee, W.; Cho, J.; Schubert, E. F.; Kim, J. K. ‘Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN’ Appl. Phys. Lett. 2011, 98, 071102.  doi: 10.1063/1.3554426

    8. [8]

      Hsu, C.-W.; Ma, C.-C. M.; Tan, C.-S.; Li, H.-T.; Huang, S.-C.; Lee, T.-M.; Tai, H. ‘Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant’ Mater. Chem. Phys. 2012, 134, 789-796.  doi: 10.1016/j.matchemphys.2012.03.070

    9. [9]

      Huang, W.; Zhang, Y.; Yu, Y.; Yuan, Y. ‘Studies on UV-stable silicone-epoxy resins’ J. Appl. Polym. Sci. 2007, 104, 3954-3959.  doi: 10.1002/(ISSN)1097-4628

    10. [10]

      Bourget, L.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. ‘Non-hydrolytic sol-gel routes to silica’ J. Non-Cryst. Solids 1998, 242, 81-91.  doi: 10.1016/S0022-3093(98)00789-3

    11. [11]

      Chung, P. T.; Yang, C. T.; Wang, S. H.; Chen, C. W.; Chiang, A. S. T.; Liu, C.-Y. ‘ZrO2/epoxy nanocomposite for LED encapsulation’ Mater. Chem. Phys. 2012, 136, 868-876.  doi: 10.1016/j.matchemphys.2012.08.013

    12. [12]

      Katayama, S.; Yamada, N.; Shibata, Y.; Noda, K. ‘Fabrication and properties of PDMDPS-based inorganic/organic hybrid sheets’ J. Ceram. Soc. Japan 2003, 111, 391.  doi: 10.2109/jcersj.111.391

    13. [13]

      Mosley, D. W.; Khanarian, G.; Conner, D. M.; Thorsen, D. L.; Zhang, T.; Wills, M. ‘High refractive index thermally stable phenoxyphenyl and phenylthiophenyl silicones for light-emitting diode applications’ J. Appl. Polym. Sci. 2014, 131, 39824.

    14. [14]

      Kim, J.-S.; Yang, S. C.; Kwak, S.-Y.; Choi, Y.; Paik, K.-W.; Bae, B.-S. ‘High performance encapsulant for light-emitting diodes (LEDs) by a Sol-gel derived hydrogen siloxane hybrid’ J. Mater. Chem. 2012, 22, 7954-7960.  doi: 10.1039/c2jm16907j

    15. [15]

      Kim, Y. H.; Bae, J. Y.; Jin, H.; Bae, B.-S. ‘Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant’ ACS Appl. Mater. Interfaces 2014, 6, 3115-3121.  doi: 10.1021/am500315y

    16. [16]

      Leach, A. R. in Molecular modelling: principles and applications. London, Longman, 2001.

    17. [17]

      Landau, D. P.; Binder, K. in A guide to Monte Carlo simulations in statistical physics. Cambridge, Cambridge University, 2000.

    18. [18]

      Newman, M. E. J.; Barkema, G. T. in Monte Carlo methods in statistical physics. Oxford, Clarendon Press, 2000.

    19. [19]

      Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L. ‘A new algorithm for Monte Carlo simulation of Ising spin systems’ J. Comput. Phys. 1975, 17, 10-18.  doi: 10.1016/0021-9991(75)90060-1

    20. [20]

      Gillespie, D. T. ‘A general method for numerically simulating the stochastic time evolution of coupled chemical reactions’ J. Comput. Phys. 1976, 22, 403-434.  doi: 10.1016/0021-9991(76)90041-3

    21. [21]

      Fichthorn, K. A.; Weinberg, W. H. ‘Theoretical foundations of dynamical Monte Carlo simulations’ J. Chem. Phys. 1991, 95, 1090-1093.  doi: 10.1063/1.461138

    22. [22]

      Carmesin, I.; Kremer, K. ‘The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial dimensions’ Macromolecules 1988, 21, 2819-2823.  doi: 10.1021/ma00187a030

    23. [23]

      Deutsch, H. P.; Binder, K. ‘Interdiffusion and self‐diffusion in polymer mixtures: a Monte Carlo study’ J. Chem. Phys. 1991, 94, 2294-2304.  doi: 10.1063/1.459901

    24. [24]

      Paul, W.; Binder, K.; Heermann, D. W.; Kremer, K. ‘Crossover scaling in semidilute polymer solutions: A Monte Carlo test’ J. Phys. II 1991, 1, 37-60.

    25. [25]

      Wittkop, M.; Kreitmeier, S.; Goritz, D. ‘The collapse transition of a single polymer chain in two and three dimensions: A Monte Carlo study’ J. Chem. Phys. 1996, 104, 3373-3385.  doi: 10.1063/1.471041

    26. [26]

      Wilding, N.B.; Muller, M.; Binder, K. ‘Chain length dependence of the polymer-solvent critical point parameters’ J. Chem. Phys. 1996, 105: 802-809.  doi: 10.1063/1.471889

    27. [27]

      Shu, R.F.; Zha, L. Y.; Eman, A. A.; Hu, W. B. ‘Fibril crystal growth in diblock copolymer solutions studied by dynamic Monte Carlo simulations’ J. Phys. Chem. B, 2015, 119 (18): 5926-5932.  doi: 10.1021/acs.jpcb.5b02204

    28. [28]

      Dasmahapatra, A. Kumar. ‘Effect of composition asymmetry on the phase separation and crystallization in double crystalline binary polymer blends: A dynamic Monte Carlo simulation study’ J. Phys. Chem. B, 2017, 121 (23): 5853-5866.  doi: 10.1021/acs.jpcb.7b02597

    29. [29]

      Chen, C.M.; Higgs, P.G. ‘Monte-Carlo simulations of polymer crystallization in dilute solution’ J. Chem. Phys. 1998, 108, 4305-4314.  doi: 10.1063/1.475830

    30. [30]

      Grest, G. S.; Kremer, K.; Duering, E. R. ‘Kinetics of end crosslinking in dense polymer melts’ Europhys. Lett. 1992, 19(3), 195.  doi: 10.1209/0295-5075/19/3/008

    31. [31]

      Binder, K.; Heermann, D. W. in Monte Carlo simulation in statistical physics: An introduction. 3rd ed.; Springer-Verlag, Berlin, 1997.

    32. [32]

      De Gennes, P. G. in Scaling concept in polymer physics. Cornell University Press, 1979.

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    3. [3]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    4. [4]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    5. [5]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    6. [6]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    9. [9]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    10. [10]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    11. [11]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    12. [12]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    15. [15]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    18. [18]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    19. [19]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    20. [20]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return