Citation: Worasak Phetwarotai, Neeranuch Phusunti, Duangdao Aht-Ong. Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 68-78. doi: 10.1007/s10118-019-2174-7 shu

Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization

  • Corresponding author: Worasak Phetwarotai, w.phetwarotai@hotmail.com
  • Received Date: 19 April 2018
    Revised Date: 18 May 2018
    Accepted Date: 7 July 2018
    Available Online: 1 August 2018

  • Polylactide (PLA) films blended with poly(butylene adipate-co-terephthalate) (PBAT) were hot melted using a twin screw extruder with the addition of triethyl citrate (TEC) as a plasticizer and toluene diisocyanate (TDI) as a compatibilizer. The synergistic effects of the two additives on the mechanical, thermal, and morphological properties of the PLA/PBAT blend films were investigated. The influence of TEC content on the plasticized PLA films and the effect of TDI’s presence on the PLA/PBAT blend films were also studied by comparing them with neat PLA. The results showed a pronounced increase in elongation at break of the plasticized PLA films with increasing TEC levels, but a slight reduction in thermal stability. Also, the addition of TEC and TDI to the blend system not only synergistically enhanced the tensile properties and tensile-impact strength of the PLA/PBAT blends, but also affected their crystallinity and cold crystallization rate, a result of the improvement of interfacial interaction between PLA and PBAT, including the enhancement of their chain mobility. The synergy of the plasticization and compatibilization processes led to the improvement of tensile properties, tensile-impact strength, and compatibility of the blends, accelerating cold crystallization without affecting crystallization.
  • 加载中
    1. [1]

      Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37(11), 1552-1596.  doi: 10.1016/j.progpolymsci.2012.04.003

    2. [2]

      Nyambo, C.; Mohanty, A. K.; Misra, M. Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 2010, 11(6), 1654–1660.  doi: 10.1021/bm1003114

    3. [3]

      Zhou, K. Y.; Li, J. B.; Wang, H. X.; Ren, J. Effect of star-shaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chinese J. Polym. Sci. 2017, 35(8), 974–991.  doi: 10.1007/s10118-017-1935-4

    4. [4]

      Shi, X.; Zhang, G.; Phuong, T. V.; Lazzeri, A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 2015, 20(1), 1579–1593.  doi: 10.3390/molecules20011579

    5. [5]

      Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35(3), 386−399.  doi: 10.1007/s10118-017-1904-y

    6. [6]

      Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermo-mechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22(3), 398−408.  doi: 10.1007/s10924-014-0639-x

    7. [7]

      Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-coterephthalate). Carbohyd. Polym. 2009, 77, 576−582.  doi: 10.1016/j.carbpol.2009.01.024

    8. [8]

      Lee, D. Y.; Lee, S. H.; Cho, M. S.; Namc, J. D.; Lee, Y. Facile fabrication of highly flexible poly(lactic acid) film using alternate multilayers of poly(butylene adipate)-co-terephthalate. Polym. Int. 2015, 64(4), 581−585.  doi: 10.1002/pi.2015.64.issue-4

    9. [9]

      Zhang, Y.; Deng, B. Y.; Liu, Q. S. Rheology and Crystallization of PLA containing PLA-grafted nanosilica. Plast. Rubber Compos. 2014, 43(9), 309−314.  doi: 10.1179/1743289814Y.0000000099

    10. [10]

      Li, Y.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7(7), 921−928.  doi: 10.1002/(ISSN)1616-5195

    11. [11]

      Ouchi, T.; Ohya, Y. Design of lactide copolymers as biomaterials. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(3), 453−462.  doi: 10.1002/(ISSN)1099-0518

    12. [12]

      Nouvel, C.; Dubois, P.; Dellacherie, E.; Six, J. L. Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(11), 2577−2588.  doi: 10.1002/(ISSN)1099-0518

    13. [13]

      Bai, H. W.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl. Mater. Interfaces 2012, 4(2), 897−905.  doi: 10.1021/am201564f

    14. [14]

      Yuan, Y.; Hu, Z.; Fu, X.; Jiang, L.; Xiao, Y.; Hu, K.; Yan, P.; Lei, J. Poly(lactic acid) plasticized by biodegradable glyceryl lactate. J. Appl. Polym. Sci. 2016, 133(21), 43460.

    15. [15]

      Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32(8), 1099−1110.  doi: 10.1007/s10118-014-1487-9

    16. [16]

      Labrecque, L. V.; Kumar, R. A.; Dave, V.; Gross, R. A.; McCarthy, S. P. Citrate esters as plasticizers for poly(lactic acid). J. Appl. Polym. Sci. 1997, 66(8), 1507−1513.  doi: 10.1002/(ISSN)1097-4628

    17. [17]

      Pillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer. 2006, 47(13), 4676−4682.  doi: 10.1016/j.polymer.2006.04.013

    18. [18]

      Kim, K. S.; Chin, I. J.; Yoon, J. S.; Choi, H. J.; Lee, D. C.; Lee, K. H. Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. J. Appl. Polym. Sci. 2001, 82(14), 3618−3626.  doi: 10.1002/(ISSN)1097-4628

    19. [19]

      Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylenes succinate-co-l-lactate) and poly(butylene succinate). Polymer. 2006, 47(10), 3557−3564.  doi: 10.1016/j.polymer.2006.03.065

    20. [20]

      Fortunati, E.; Puglia, D.; Iannoni, A.; Terenzi, A.; Kenny, J. M.; Torre, L. Processing conditions, thermal and mechanical responses of stretchable poly(lactic acid)/poly(butylene succinate) films. Materials 2017, 809, 1−16.

    21. [21]

      Zhang, L. L.; Xiong, C. D.; Deng, X. M. Biodegradable polyester blends for biomedical application. J. Appl. Polym. Sci. 1995, 56(1), 103−112.  doi: 10.1002/app.1995.070560114

    22. [22]

      Wang, L.; Ma, W.; Gross, R. A.; McCarthy, S. P. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym. Degrad. Stabil. 1998, 59(1), 161−168.

    23. [23]

      Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7(1), 199−207.  doi: 10.1021/bm050581q

    24. [24]

      Zhang, N. W.; Wang, Q. F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44(1), 250−256.  doi: 10.1007/s10853-008-3049-4

    25. [25]

      Liu, B.; Bhaladhare, S.; Zhan, P.; Jiang, L.; Zhang, J. Morphology and Properties of Thermoplastic Sugar Beet Pulp and Poly(butylene adipate-co-terepthalate) Blends. Ind. Eng. Chem. Res. 2011, 50, 13859−13865.  doi: 10.1021/ie2017948

    26. [26]

      Wang, Y.; Chiao, S. M.; Hung, T. F.; Yang, S. Y. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type. J. Appl. Polym. Sci. 2012, 125, E402−E412.  doi: 10.1002/app.36920

    27. [27]

      Xiao, H. W.; Li, P.; Ren, X.; Jiang, T.; Taut, Y. J. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J. Appl. Polym. Sci. 2010, 118, 3558−3569.  doi: 10.1002/app.32728

    28. [28]

      Phetwarotai, W.; Aht-Ong, D. Characterization and properties of nucleated polylactide, poly(butylenes adipate-co-terephthalate), and thermoplastic starch ternary blend films: Effects of compatibilizer and starch. Adv. Mater. Res. 2013, 747, 673−677.  doi: 10.4028/www.scientific.net/AMR.747

    29. [29]

      Jang, W. Y.; Shin, B. Y.; Lee, T. J.; Narayan, R. J. Thermal properties and morphology of biodegradation PLA/starch compatibilized blends. Ind. Eng. Chem. 2007, 13, 457−464.

    30. [30]

      Zhang, J. F.; Sun, X. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 2004, 94, 1697−1704.  doi: 10.1002/(ISSN)1097-4628

    31. [31]

      Wang, H.; Sun, X.; Seib, P. Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate. J. Polym. Environ. 2002, 10, 133−138.  doi: 10.1023/A:1021139903549

    32. [32]

      Phetwarotai, W.; Potiyaraj, P.; Aht-Ong, D. Properties of compatibilized polylactide blend films with gelatinized corn and tapioca starches. J. Appl. Polym. Sci. 2010, 116, 2305−2311.

    33. [33]

      Carlson, D.; Nie, L.; Narayan, R.; Dubois, P. Maleation of polylactide (PLA) by reactive extrusion. J. Appl. Polym. Sci. 1999, 72: 477−485.  doi: 10.1002/(ISSN)1097-4628

    34. [34]

      Li, H.; Huneault, M. A. Effect of chain extension on the properties of PLA/TPS blends. J. Appl. Polym. Sci. 2011, 122, 134-141.  doi: 10.1002/app.v122.1

    35. [35]

      Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97(10), 1898−1914.  doi: 10.1016/j.polymdegradstab.2012.06.028

    36. [36]

      Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22(3), 398−408.  doi: 10.1007/s10924-014-0639-x

    37. [37]

      Marcilla, A. and Beltran, M., in Handbook of Plasticizers, 1st ed., by Wypych, G., ChemTec Publishing, Toronto, NY, 2004, p.115

    38. [38]

      Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34(9), 1129−1140.  doi: 10.1007/s10118-016-1834-0

    39. [39]

      Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Mechanical characteristics and thermal behaviours of polylactide blend films: Influence of nucleating agent and poly(butylenes adipate-co-terephthalate). Plast. Rubber Compos. 2016, 45(8), 333−345.  doi: 10.1080/14658011.2016.1197556

    40. [40]

      Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41(4), 1352−1357.  doi: 10.1021/ma0706071

    41. [41]

      Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5(10), 849−858.  doi: 10.3144/expresspolymlett.2011.84

    42. [42]

      Bueche, F., in Physical Properties of Polymers, 1st ed., Interscience Publishers, NY, 1979, p.102

  • 加载中
    1. [1]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

Metrics
  • PDF Downloads(0)
  • Abstract views(582)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return