Citation: Zhen-He Wang, Xing Chen, Hai-Xia Yang, Jiang Zhao, Shi-Yong Yang. The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 268-278. doi: 10.1007/s10118-019-2173-8 shu

The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films

  • Corresponding author: Hai-Xia Yang, yanghx@iccas.ac.cn Shi-Yong Yang, shiyang@iccas.ac.cn
  • Received Date: 11 August 2018
    Revised Date: 9 September 2018
    Accepted Date: 18 September 2018
    Available Online: 22 October 2018

  • The thermal and mechanical properties of the chemically imidized polyimide (CIPI) films and thermally imidized polyimide (TIPI) films were investigated systematically. Experimental results indicated that the CIPI films show dramatically enhanced tensile strength and modulus with obviously reduced coefficient of thermal expansion (CTE) in comparison with TIPI films. These enhancements results from the high in-plane orientation and close packing of the CIPI backbones. Compared with thermal imidization which starts at about 140 °C, the chemical imidization activated by acetic anhydride and isoquinoline initiates the cyclization even at room temperature. The resulting imide rings restrict the mobility of polymer chains and lead to the in-plane orientation with solvent evaporation. Additionally, fewer small molecules remain in the films after treated at 120 °C by chemical imidization than by thermal imidization. The polymer chain plasticization caused by the evaporation of small molecules at high temperature is obviously restricted. Moreover, the partially imidized polymer inhibits the decomposition of mainchains that occurs at subsequent high temperature process, being beneficial to the formation of high molecular weight PI films. Hence, chemical imidization pathway shows apparent advantage to produce PI films with great combined properties, including high modulus, strength and toughness, as well as high thermal dimension stability etc.
  • 加载中
    1. [1]

      Ghosh, M. in Polyimides: Fundamentals and applications. CRC Press: 1996.

    2. [2]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.  doi: 10.1016/j.progpolymsci.2012.02.005

    3. [3]

      Mittal, K. L. in Polyimides: Synthesis, characterization, and applications. Springer Science & Business Media: Boston, 1984.

    4. [4]

      Chen, H. L.; Ho, S. H.; Wang, T. H.; Chen, K. M.; Pan, J. P.; Liang, S. M.; Hung, A. Curl-free high-adhesion polyimide/copper laminate. J. Appl. Polym. Sci. 1994, 51, 1647-1652.  doi: 10.1002/app.1994.070510914

    5. [5]

      Numata, S.; Ochara, S.; Fujisaki, K.; Imaizumi, J.; Kinjo, N. Thermal-expansion behavior of various aromatic polyimides. J. Appl. Polym. Sci. 1986, 31, 101-110.  doi: 10.1002/app.1986.070310110

    6. [6]

      Ding, M. X. in Polyimides: Chemistry, relationship between structure and properties and materials. Science Press: Beijing, China, 2012.

    7. [7]

      Lee, Y. I.; Choa, Y. H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J. Mater. Chem. 2012, 22, 12517-12522.  doi: 10.1039/c2jm31381b

    8. [8]

      Long, K.; Kattamis, A.; Cheng, I. C.; Gao, Y. X.; Gleskova, H.; Wagner, S.; Sturm, J. C. In P-24: High-temperature (250 °C) amorphous-silicon TFT's on clear plastic substrates, SID Symposium Digest of Technical Papers 2005, 36, 313-315.  doi: 10.1889/1.2036433

    9. [9]

      Numata, S.; Miwa, T. Thermal-expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains. Polymer 1989, 30, 1170-1174.  doi: 10.1016/0032-3861(89)90100-6

    10. [10]

      Wang, H. Y.; Liu, T. J.; Liu, S. F.; Jeng, J. L.; Guan, C. E. Thermal and mechanical properties of stretched recyclable polyimide film. J. Appl. Polym. Sci. 2011, 122, 210-219.  doi: 10.1002/app.v122.1

    11. [11]

      Wang, L. N.; Yu, X. H.; Wang, D. M.; Zhao, X. G.; Yang, D.; urRehman, S.; Chen, C. H.; Zhou, H. W.; Dang, G. D. High modulus and high strength ultra-thin polyimide films with hot-stretch induced molecular orientation. Mater. Chem. Phys. 2013, 139, 968-974.  doi: 10.1016/j.matchemphys.2013.02.063

    12. [12]

      Bae, W. J.; Kovalev, M. K.; Kalinina, F.; Kim, M.; Cho, C. Towards colorless polyimide/silica hybrids for flexible substrates. Polymer 2016, 105, 124-132.  doi: 10.1016/j.polymer.2016.10.023

    13. [13]

      Tsai, M. H.; Huang, Y. C.; Tseng, I. H.; Yu, H. P.; Lin, Y. K.; Huang, S. L. Thermal and mechanical properties of polyimide/nano-silica hybrid films. Thin Solid Films 2011, 519, 5238-5242.  doi: 10.1016/j.tsf.2011.01.167

    14. [14]

      Yamashina, N.; Isobe, T.; Ando, S. Low thermal expansion composites prepared from polyimide and ZrW2O8 particles with negative thermal expansion. J. Photopolym. Sci. Technol. 2012, 25, 385-388.  doi: 10.2494/photopolymer.25.385

    15. [15]

      An, L.; Pan, Y. Z.; Shen, X. W.; Lu, H. B.; Yang, Y. L. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J. Mater. Chem. 2008, 18, 4928-4941.  doi: 10.1039/b805849k

    16. [16]

      Choi, C. H.; Sohn, B. H.; Chang, J. H. Colorless and transparent polyimide nanocomposites: Comparison of the properties of homo- and co-polymers. J. Ind. Eng. Chem. 2013, 19, 1593-1599.  doi: 10.1016/j.jiec.2013.01.028

    17. [17]

      Jin, H. S.; Chang, J. H.; Kim, J. C. Synthesis and characterization of colorless polyimide nanocomposite films containing pendant trifluoromethyl groups. Macromol. Res. 2008, 16, 503-509.  doi: 10.1007/BF03218551

    18. [18]

      Xenopoulos, C.; Mascia, L.; Shaw, S. J. Polyimide–silica hybrids derived from an isoimide oligomer precursor. J. Mater. Chem. 2002, 12, 213-218.  doi: 10.1039/b105434c

    19. [19]

      Hasegawa, M.; Matano, T.; Shindo, Y.; Sugimura, T. Spontaneous molecular orientation of polyimides induced by thermal imidization. 2. In-plane orientation. Macromolecules. 1996, 29, 7897-7909.  doi: 10.1021/ma960018n

    20. [20]

      Inoue, H.; Sasaki, Y.; Ocawa, T. Properties of copolyimides prepared from different tetracarboxylic dianhydrides and diamines. J. Appl. Polym. Sci. 1996, 62, 2303-2310.  doi: 10.1002/(ISSN)1097-4628

    21. [21]

      Song, G. L.; Wang, S.; Wang, D. M.; Zhou, H. W.; Chen, C. H.; Zhao, X. G.; Dang, G. D. Rigidity enhancement of polyimides containing benzimidazole moieties. J. Appl. Polym. Sci. 2013, 130, 1653-1658.  doi: 10.1002/app.v130.3

    22. [22]

      Yu, X. H.; Liang, W. H.; Cao, J. H.; Wu, D. Y. Mixed rigid and flexible component design for high-performance polyimide films. Polymers 2017, 9, 451.  doi: 10.3390/polym9090451

    23. [23]

      Hasegawa, M.; Shindo, Y.; Sugimura, T.; Yokota, R.; Kochi, M.; Mita, I. Spontaneous molecular-orientation of polyimides induced by thermal imidization. 1. Uniaxial stretching of polyamic acid film. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 1299-1303.  doi: 10.1002/polb.1994.090320716

    24. [24]

      Ishii, J.; Shimizu, N.; Ishihara, N.; Ikeda, Y.; Sengui, N.; Matano, T.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting- and melt-induced in-plane orientation. Eur. Polym. J. 2010, 46, 69-80.  doi: 10.1016/j.eurpolymj.2009.09.002

    25. [25]

      Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694.  doi: 10.1016/0079-6700(91)90010-I

    26. [26]

      Dinehart, R. A.; Wright, W. W. Preparation and fabrication of aromatic polyimides. J. Appl. Polym. Sci. 1967, 11, 609-627.  doi: 10.1002/app.1967.070110501

    27. [27]

      Kreuz, J. A.; Endrey, A. L.; Gay, F. P.; Srong, C. E. Studies of thermal cyclizations of polyamic acids and tertiary amine salts. J. Polym. Sci., Part A: Polym. Chem. 1966, 4, 2607-2616.  doi: 10.1002/pol.1966.150041023

    28. [28]

      Feger, C. Curing of polyimides. Prog. Polym. Sci. 1989, 29, 347-351.

    29. [29]

      Brekner, M. J.; Feger, C. Curing studies of a polyimide precursor. II. Polyamic acid. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 2479-2491.  doi: 10.1002/pola.1987.080250913

    30. [30]

      Kotera, M.; Nishino, T.; Nakamae, K. Imidization processes of aromatic polyimide by temperature modulated DSC. Polymer 2000, 41, 3615-3619.  doi: 10.1016/S0032-3861(99)00546-7

    31. [31]

      Nishino, T.; Kotera, M.; Inayoshi, N.; Miki, N.; Nakamae, K. Residual stress and microstructures of aromatic polyimide with different imidization processes. Polymer 2000, 41, 6913-6918.  doi: 10.1016/S0032-3861(00)00002-1

    32. [32]

      Jo, B. W.; Ahn, K. H.; Lee, S. J. Effect of thermal history during drying and curing process on the chain orientation of rod-shaped polyimide. Polymer 2014, 55, 5829-5836.  doi: 10.1016/j.polymer.2014.09.016

    33. [33]

      Shin, T. J.; Lee, B.; Youn, H. S.; Lee, K. B.; Ree, M. Time-resolved synchrotron X-ray diffraction and infrared spectroscopic studies of imidization and structural evolution in a microscaled film of PMDA-3,4'-ODA poly(amic acid). Langmuir. 2001, 17, 7842-7850.  doi: 10.1021/la0108656

    34. [34]

      Young, P. R.; Davis, J. R. J.; Chang, A. C.; Richardson, J. N. Characterization of a thermally imidized soluble polyimide film. J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 3107-3122.  doi: 10.1002/pola.1990.080281117

    35. [35]

      Pryde, C. A. IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 711-724.  doi: 10.1002/pola.1989.080270229

    36. [36]

      Unsal, E.; Cakmak, M. Real-time characterization of physical changes in polyimide film formation: From casting to imidization. Macromolecules. 2013, 46, 8616-8627.  doi: 10.1021/ma401361w

    37. [37]

      Chen, W. J.; Chen, W.; Zhang, B. Q.; Yang, S. Y.; Liu, C. Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205-215.  doi: 10.1016/j.polymer.2016.12.037

    38. [38]

      Kailani, M. H.; Sung, C. S.; Huang, S. J. Syntheses and characterization of model imide compounds and chemical imidization study. Macromolecules. 1992, 25, 3751-3757.  doi: 10.1021/ma00040a022

    39. [39]

      Zhai, Y.; Yang, Q.; Zhu, R. Q.; Gu, Y. The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. J. Mater. Chem. 2008, 43, 338-344.

    40. [40]

      Wang, Y.; Wang, Y.; Jia, Z. X.; Qin, J. Q.; Gu, Y. Effect of pre-imidization on the aggregation structure and properties of polyimide films. Polymer 2012, 53, 4157-4163.  doi: 10.1016/j.polymer.2012.07.034

    41. [41]

      Yang, W. K.; Liu, F. F.; Li, G. M.; Zhang, E. S.; Xue, Y. H.; Dong, Z. X.; Qiu, X. P.; Ji, X. L. Comparison of different methods for determining the imidization degree of polyimide fibers. Chinese J. Polym. Sci. 2016, 34, 209-220.  doi: 10.1007/s10118-016-1749-9

    42. [42]

      Snyder, R. W.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: Thermal curing. Macromolecules. 1989, 22, 4166-4172.  doi: 10.1021/ma00201a006

    43. [43]

      Xu, Y.; Zhang, Q. H. Two-dimensional Fourier transform infrared (FT-IR) correlation spectroscopy study of the imidization reaction from polyamic acid to polyimide. Appl. Spectrosc. 2014, 68, 657-662.  doi: 10.1366/13-07283

    44. [44]

      Coburn, J. C.; Pottiger, M. T.; Noe, S. C.; Senturia, S. D. Stress in polyimide coatings. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 1271-1283.

    45. [45]

      Russell, T. P.; Gugger, H.; Swalen, J. D. In-plane orientation of polyimide. J. Polym. Sci., Part B: Polym. Phys. 1983, 21, 1745-1756.  doi: 10.1002/pol.1983.180210912

    46. [46]

      Eguchi, Y.; Unsal, E.; Cakmak, M. Critical phenomenon during drying of semiaromatic, transparent and soluble polyimide cast films: Real-time observation of birefringence and other integrated parameters. Macromolecules. 2013, 46, 7488-7501.  doi: 10.1021/ma401209j

    47. [47]

      Chen, Y.; Zhang, Q. Y.; Sun, W. L.; Lei, X. F.; Yao, P. Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel (A2+B2B′+B2)-type method. J. Membr. Sci. 2014, 450, 138-146.  doi: 10.1016/j.memsci.2013.09.003

    48. [48]

      Lei, X. F.; Qiao, M. T.; Tian, L. D.; Chen, Y. H.; Zhang, Q. Y. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548-2561.  doi: 10.1021/acs.jpcc.5b11667

  • 加载中
    1. [1]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    2. [2]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    3. [3]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    6. [6]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    7. [7]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    8. [8]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    9. [9]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    10. [10]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    11. [11]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    12. [12]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    13. [13]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    16. [16]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    17. [17]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    18. [18]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    19. [19]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    20. [20]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

Metrics
  • PDF Downloads(0)
  • Abstract views(886)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return