Citation: Fan-Fan Fu, Ben-Qing Zhou, Zhi-Jun Ouyang, Yi-Lun Wu, Jing-Yi Zhu, Ming-Wu Shen, Jin-Dong Xia, Xiang-Yang Shi. Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 129-135. doi: 10.1007/s10118-019-2172-9 shu

Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors

  • Corresponding author: Ming-Wu Shen, mwshen@dhu.edu.cn Jin-Dong Xia, xiajd_21@163.com Xiang-Yang Shi, xshi@dhu.edu.cn
  • † Authors contributed equally to this work.
  • Received Date: 29 July 2018
    Revised Date: 14 September 2018
    Accepted Date: 18 September 2018
    Available Online: 22 October 2018

  • We present here the development of cholesterol (Chol)-modified dendrimer system for targeted chemotherapy of folate (FA) receptor-expressing cancer cells. In our study, poly(amidoamine) (PAMAM) dendrimers of generation 5 (G5) were functionalized step-by-step with Chol, fluorescein isothiocyanate (FI), and FA via a poly(ethylene glycol) (PEG) spacer (PEG-FA), and then acetamide to shield their remaining surface amines. The synthesized G5.NHAc-Chol-FI-PEG-FA (for short, G5-CFPF) dendrimers were utilized to encapsulate 10-hydroxycamptothecin (HCP), a hydrophobic anticancer drug. We find that each G5-CFPF dendrimer can encapsulate 13.8 HCP molecules. The complexes show a slower release profiles of HCP in a pH-dependent manner than the control complexes formed using the same dendrimers without Chol under the same conditions. Thanks to the targeting role played by FA, the complexes display a specific inhibition efficacy to FA receptor-expressing cervical cancer cells. The designed Chol-modified dendrimers may be adopted as a promising carrier for application in targeted cancer therapy.
  • 加载中
    1. [1]

      Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 12911-12920.  doi: 10.1021/am404714w

    2. [2]

      Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M. W.; Shi, X. Y. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874-1900.  doi: 10.1039/C7CS00657H

    3. [3]

      Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504-1534.  doi: 10.1002/adma.201104763

    4. [4]

      Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885-2911.  doi: 10.1039/c2cs15260f

    5. [5]

      Fu, F. F.; Shang, L. R.; Zheng, F. Y.; Chen, Z. Y.; Wang, H.; Wang, J.; Gu, Z. Z.; Zhao, Y. J. Cells cultured on core-shell photonic crystal barcodes for drug screening. ACS Appl. Mater. Interfaces 2016, 8, 13840-13848.  doi: 10.1021/acsami.6b04966

    6. [6]

      Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Merging the best of both worlds: Hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev. 2014, 43, 444-472.  doi: 10.1039/C3CS60299K

    7. [7]

      Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592-599.  doi: 10.1016/j.tips.2009.08.004

    8. [8]

      Fu, F. F.; Wu, Y. L.; Zhu, J. Y.; Wen, S. H.; Shen, M. W.; Shi, X. Y. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl. Mater. Interfaces 2014, 6, 16416-16425.  doi: 10.1021/am504849x

    9. [9]

      Zhu, J. Y.; Fu, F. F.; Xiong, Z. J.; Shen, M. W.; Shi, X. Y. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf., B 2015, 133, 36-42.  doi: 10.1016/j.colsurfb.2015.05.040

    10. [10]

      Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16-20.  doi: 10.1021/nn900002m

    11. [11]

      Hammond, P. T. Virtual issue on nanomaterials for drug delivery. ACS Nano 2011, 5, 681-684.  doi: 10.1021/nn2003508

    12. [12]

      Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS nano 2017, 11, 12134-12144.  doi: 10.1021/acsnano.7b05214

    13. [13]

      Luo, H.; Wang, Q.; Deng, Y.; Yang, T.; Ke, H.; Yang, H.; He, H.; Guo, Z.; Yu, D.; Wu, H. Mutually synergistic nanoparticles for effective thermo‐molecularly targeted therapy. Adv. Funct. Mater. 2017, 27, 1702834.  doi: 10.1002/adfm.v27.39

    14. [14]

      De Koker, S.; Hoogenboom, R.; De Geest, B. G. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 2012, 41, 2867-2884.  doi: 10.1039/c2cs15296g

    15. [15]

      Jang, W. D.; Yim, D.; Hwang, I. H. Photofunctional hollow nanocapsules for biomedical applications. J. Mater. Chem. B 2014, 2, 2202-2211.

    16. [16]

      Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliver. Rev. 2011, 63, 1340-1351.  doi: 10.1016/j.addr.2011.06.013

    17. [17]

      Wen, S. H.; Liu, H.; Cai, H. D.; Shen, M. W.; Shi, X. Y. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Healthcare Mater. 2013, 2, 1267-1276.  doi: 10.1002/adhm.v2.9

    18. [18]

      Wu, Y. L.; Guo, R.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Wang, J. H.; Shi, X. Y. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J. Mater. Chem. B 2014, 2, 7410-7418.

    19. [19]

      Diaz, A.; Saxena, V.; Gonzalez, J.; David, A.; Casanas, B.; Carpenter, C.; Batteas, J. D.; Colon, J. L.; Clearfield, A.; Hussain, M. D. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 2012, 48, 1754-1756.  doi: 10.1039/c2cc16218k

    20. [20]

      Wang, S. G.; Wu, Y. L.; Guo, R.; Huang, Y. P.; Wen, S. H.; Shen, M. W.; Wang, J. H.; Shi, X. Y. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 2013, 29, 5030-5036.  doi: 10.1021/la4001363

    21. [21]

      Cheng, J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869-876.  doi: 10.1016/j.biomaterials.2006.09.047

    22. [22]

      Zhou, B. Q.; Zhao, L. Z.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J. Mater. Chem. B 2017, 5, 1542-1550.  doi: 10.1039/C6TB02620F

    23. [23]

      Guo, R.; Yao, Y.; Cheng, G. C.; Wang, S. H.; Li, Y.; Shen, M. W.; Zhang, Y. H.; Baker, J. R.; Wang, J. H.; Shi, X. Y. Synthesis of glycoconjugated poly(amindoamine) dendrimers for targeting human liver cancer cells. RSC Adv. 2012, 2, 99-102.  doi: 10.1039/C1RA00320H

    24. [24]

      Liu, H.; Wang, H.; Xu, Y. H.; Guo, R.; Wen, S. H.; Huang, Y. P.; Liu, W. N.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 6944-6953.  doi: 10.1021/am500761x

    25. [25]

      Zhu, J. Y.; Zheng, L. F.; Wen, S. H.; Tang, Y. Q.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014, 35, 7635-7646.  doi: 10.1016/j.biomaterials.2014.05.046

    26. [26]

      Zheng, Y.; Fu, F. F.; Zhang, M. G.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Medchemcomm 2014, 5, 879-885.  doi: 10.1039/C3MD00324H

    27. [27]

      Shukla, R.; Thomas, T. P.; Desai, A. M.; Kotlyar, A.; Park, S. J.; Baker, J. R. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 2008, 19.  doi: 10.1088/0957-4484/19/29/295102

    28. [28]

      Dung, T. H.; Kim, J. S.; Juliano, R. L.; Yoo, H. Preparation and evaluation of cholesteryl PAMAM dendrimers as nano delivery agents for antisense oligonucleotides. Colloids Surf., A 2008, 313, 273-277.

    29. [29]

      Dhanikula, R. S.; Argaw, A.; Bouchard, J. F.; Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol. Pharmaceutics 2008, 5, 105-116.  doi: 10.1021/mp700086j

    30. [30]

      Shi, X. Y.; Lee, I.; Chen, X. S.; Shen, M. W.; Xiao, S. L.; Zhu, M. F.; Baker, J. R.; Wang, S. H. Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 2010, 6, 2539-2545.  doi: 10.1039/b925274f

    31. [31]

      Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.; Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff, M. W. Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006, 66, 11913-11921.  doi: 10.1158/0008-5472.CAN-06-2066

    32. [32]

      Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A. M.; Majoral, J. P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev. 2018, 47, 514-532.  doi: 10.1039/C7CS00550D

    33. [33]

      Zhao, Y.; Peng, J.; Li, J.; Huang, L.; Yang, J.; Huang, K.; Li, H.; Jiang, N.; Zheng, S.; Zhang, X. Tumor-targeted and clearable human protein-based MRI nanoprobes. Nano Lett. 2017, 17, 4096-4100.  doi: 10.1021/acs.nanolett.7b00828

    34. [34]

      Zhao, L.; Wu, X.; Wang, X.; Duan, C.; Wang, H.; Punjabi, A.; Zhao, Y.; Zhang, Y.; Xu, Z.; Gao, H. Development of excipient-free freeze-dryable unimolecular hyperstar polymers for efficient siRNA silencing. ACS Macro Lett. 2017, 6, 700-704.  doi: 10.1021/acsmacrolett.7b00242

    35. [35]

      Li, Z.; Zhang, Y.; Huang, L.; Yang, Y.; Zhao, Y.; El-Banna, G.; Han, G. Nanoscale " fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms. Theranostics 2016, 6, 2380.  doi: 10.7150/thno.15914

    36. [36]

      Mercado-Lubo, R.; Zhang, Y.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016, 7, 12225.  doi: 10.1038/ncomms12225

    37. [37]

      Peng, C.; Qin, J. B.; Zhou, B. Q.; Chen, Q.; Shen, M. W.; Zhu, M. F.; Lu, X.W.; Shi, X. Y. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym. Chem. 2013, 4, 4412-4424.  doi: 10.1039/c3py00521f

    38. [38]

      Liu, H.; Wang, H.; Xu, Y. H.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 2014, 6, 4521-4526.  doi: 10.1039/C3NR06694K

    39. [39]

      Zhang, Y. Q.; Sun, Y. H.; Xu, X. P.; Zhang, X. Z.; Zhu, H.; Huang, L. L.; Qi, Y. J.; Shen, Y. M. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J. Med. Chem. 2010, 53, 3262-3272.  doi: 10.1021/jm901910j

    40. [40]

      Maxfield, F. R.; Tabas, I., Role of cholesterol and lipid organization in disease. Nature 2005, 438, 612-621.  doi: 10.1038/nature04399

    41. [41]

      Chen, Q.; Pan, Z.; Zhao, M.; Wang, Q.; Qiao, C.; Miao, L.; Ding, X., High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J. Cell. Physiol. 2018, 233, 6722-6732.  doi: 10.1002/jcp.v233.9

    42. [42]

      Nelson, E. R., The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol. 2018, 466, 73-80.  doi: 10.1016/j.mce.2017.09.021

    43. [43]

      Li, L. H.; Guo, K.; Lu, J.; Venkatraman, S. S.; Luo, D.; Ng, K. C.; Ling, E. A.; Moochhala, S.; Yang, Y. Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29, 1509-1517.  doi: 10.1016/j.biomaterials.2007.11.014

    44. [44]

      Tsai, Y. C.; Vijayaraghavan, P.; Chiang, W. H.; Chen, H. H.; Liu, T. I.; Shen, M. Y.; Omoto, A.; Kamimura, M.; Soga, K.; Chiu, H. C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics 2018, 8, 1435-1448.  doi: 10.7150/thno.22482

    45. [45]

      Zhou, B. Q.; Xiong, Z. G.; Wang, P.; Peng, C.; Shen, M. W.; Mignani, S.; Majoral, J. P.; Shi, X. Y. Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Deliver. 2018, 25, 178-186.  doi: 10.1080/10717544.2017.1422299

    46. [46]

      Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem. 2011, 2, 1754-1760.  doi: 10.1039/c1py00179e

    47. [47]

      Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X., Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011, 32, 3322-3329.  doi: 10.1016/j.biomaterials.2010.12.060

    48. [48]

      Luo, Y.; Zhao, L. Z.; Li, X.; Yang, J.; Guo, L. L.; Zhang, G. X.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J. Mater. Chem. B 2016, 4, 7220-7225.  doi: 10.1039/C6TB02190E

    49. [49]

      Yang, J.; Luo, Y.; Xu, Y. H.; Li, J. C.; Zhang, Z. X.; Wang, H.; Shen, M. W.; Shi, X. Y.; Zhang, G. X. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl. Mater. Interfaces 2015, 7, 5420-5428.  doi: 10.1021/am508983n

    50. [50]

      Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W., Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 2003, 125, 15485-15489.  doi: 10.1021/ja0347383

  • 加载中
    1. [1]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    2. [2]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    3. [3]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    4. [4]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

    5. [5]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    6. [6]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    7. [7]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    8. [8]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    9. [9]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    10. [10]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    11. [11]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      . . University Chemistry, 2024, 39(10): 0-0.

    14. [14]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    15. [15]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    16. [16]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    17. [17]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    18. [18]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    19. [19]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    20. [20]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

Metrics
  • PDF Downloads(0)
  • Abstract views(571)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return