-
[1]
Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 12911-12920.
doi: 10.1021/am404714w
-
[2]
Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M. W.; Shi, X. Y. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874-1900.
doi: 10.1039/C7CS00657H
-
[3]
Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504-1534.
doi: 10.1002/adma.201104763
-
[4]
Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885-2911.
doi: 10.1039/c2cs15260f
-
[5]
Fu, F. F.; Shang, L. R.; Zheng, F. Y.; Chen, Z. Y.; Wang, H.; Wang, J.; Gu, Z. Z.; Zhao, Y. J. Cells cultured on core-shell photonic crystal barcodes for drug screening. ACS Appl. Mater. Interfaces 2016, 8, 13840-13848.
doi: 10.1021/acsami.6b04966
-
[6]
Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Merging the best of both worlds: Hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev. 2014, 43, 444-472.
doi: 10.1039/C3CS60299K
-
[7]
Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592-599.
doi: 10.1016/j.tips.2009.08.004
-
[8]
Fu, F. F.; Wu, Y. L.; Zhu, J. Y.; Wen, S. H.; Shen, M. W.; Shi, X. Y. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl. Mater. Interfaces 2014, 6, 16416-16425.
doi: 10.1021/am504849x
-
[9]
Zhu, J. Y.; Fu, F. F.; Xiong, Z. J.; Shen, M. W.; Shi, X. Y. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf., B 2015, 133, 36-42.
doi: 10.1016/j.colsurfb.2015.05.040
-
[10]
Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16-20.
doi: 10.1021/nn900002m
-
[11]
Hammond, P. T. Virtual issue on nanomaterials for drug delivery. ACS Nano 2011, 5, 681-684.
doi: 10.1021/nn2003508
-
[12]
Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS nano 2017, 11, 12134-12144.
doi: 10.1021/acsnano.7b05214
-
[13]
Luo, H.; Wang, Q.; Deng, Y.; Yang, T.; Ke, H.; Yang, H.; He, H.; Guo, Z.; Yu, D.; Wu, H. Mutually synergistic nanoparticles for effective thermo‐molecularly targeted therapy. Adv. Funct. Mater. 2017, 27, 1702834.
doi: 10.1002/adfm.v27.39
-
[14]
De Koker, S.; Hoogenboom, R.; De Geest, B. G. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 2012, 41, 2867-2884.
doi: 10.1039/c2cs15296g
-
[15]
Jang, W. D.; Yim, D.; Hwang, I. H. Photofunctional hollow nanocapsules for biomedical applications. J. Mater. Chem. B 2014, 2, 2202-2211.
-
[16]
Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliver. Rev. 2011, 63, 1340-1351.
doi: 10.1016/j.addr.2011.06.013
-
[17]
Wen, S. H.; Liu, H.; Cai, H. D.; Shen, M. W.; Shi, X. Y. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Healthcare Mater. 2013, 2, 1267-1276.
doi: 10.1002/adhm.v2.9
-
[18]
Wu, Y. L.; Guo, R.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Wang, J. H.; Shi, X. Y. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J. Mater. Chem. B 2014, 2, 7410-7418.
-
[19]
Diaz, A.; Saxena, V.; Gonzalez, J.; David, A.; Casanas, B.; Carpenter, C.; Batteas, J. D.; Colon, J. L.; Clearfield, A.; Hussain, M. D. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 2012, 48, 1754-1756.
doi: 10.1039/c2cc16218k
-
[20]
Wang, S. G.; Wu, Y. L.; Guo, R.; Huang, Y. P.; Wen, S. H.; Shen, M. W.; Wang, J. H.; Shi, X. Y. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 2013, 29, 5030-5036.
doi: 10.1021/la4001363
-
[21]
Cheng, J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869-876.
doi: 10.1016/j.biomaterials.2006.09.047
-
[22]
Zhou, B. Q.; Zhao, L. Z.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J. Mater. Chem. B 2017, 5, 1542-1550.
doi: 10.1039/C6TB02620F
-
[23]
Guo, R.; Yao, Y.; Cheng, G. C.; Wang, S. H.; Li, Y.; Shen, M. W.; Zhang, Y. H.; Baker, J. R.; Wang, J. H.; Shi, X. Y. Synthesis of glycoconjugated poly(amindoamine) dendrimers for targeting human liver cancer cells. RSC Adv. 2012, 2, 99-102.
doi: 10.1039/C1RA00320H
-
[24]
Liu, H.; Wang, H.; Xu, Y. H.; Guo, R.; Wen, S. H.; Huang, Y. P.; Liu, W. N.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 6944-6953.
doi: 10.1021/am500761x
-
[25]
Zhu, J. Y.; Zheng, L. F.; Wen, S. H.; Tang, Y. Q.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014, 35, 7635-7646.
doi: 10.1016/j.biomaterials.2014.05.046
-
[26]
Zheng, Y.; Fu, F. F.; Zhang, M. G.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Medchemcomm 2014, 5, 879-885.
doi: 10.1039/C3MD00324H
-
[27]
Shukla, R.; Thomas, T. P.; Desai, A. M.; Kotlyar, A.; Park, S. J.; Baker, J. R. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 2008, 19.
doi: 10.1088/0957-4484/19/29/295102
-
[28]
Dung, T. H.; Kim, J. S.; Juliano, R. L.; Yoo, H. Preparation and evaluation of cholesteryl PAMAM dendrimers as nano delivery agents for antisense oligonucleotides. Colloids Surf., A 2008, 313, 273-277.
-
[29]
Dhanikula, R. S.; Argaw, A.; Bouchard, J. F.; Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol. Pharmaceutics 2008, 5, 105-116.
doi: 10.1021/mp700086j
-
[30]
Shi, X. Y.; Lee, I.; Chen, X. S.; Shen, M. W.; Xiao, S. L.; Zhu, M. F.; Baker, J. R.; Wang, S. H. Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 2010, 6, 2539-2545.
doi: 10.1039/b925274f
-
[31]
Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.; Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff, M. W. Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006, 66, 11913-11921.
doi: 10.1158/0008-5472.CAN-06-2066
-
[32]
Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A. M.; Majoral, J. P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev. 2018, 47, 514-532.
doi: 10.1039/C7CS00550D
-
[33]
Zhao, Y.; Peng, J.; Li, J.; Huang, L.; Yang, J.; Huang, K.; Li, H.; Jiang, N.; Zheng, S.; Zhang, X. Tumor-targeted and clearable human protein-based MRI nanoprobes. Nano Lett. 2017, 17, 4096-4100.
doi: 10.1021/acs.nanolett.7b00828
-
[34]
Zhao, L.; Wu, X.; Wang, X.; Duan, C.; Wang, H.; Punjabi, A.; Zhao, Y.; Zhang, Y.; Xu, Z.; Gao, H. Development of excipient-free freeze-dryable unimolecular hyperstar polymers for efficient siRNA silencing. ACS Macro Lett. 2017, 6, 700-704.
doi: 10.1021/acsmacrolett.7b00242
-
[35]
Li, Z.; Zhang, Y.; Huang, L.; Yang, Y.; Zhao, Y.; El-Banna, G.; Han, G. Nanoscale " fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms. Theranostics 2016, 6, 2380.
doi: 10.7150/thno.15914
-
[36]
Mercado-Lubo, R.; Zhang, Y.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016, 7, 12225.
doi: 10.1038/ncomms12225
-
[37]
Peng, C.; Qin, J. B.; Zhou, B. Q.; Chen, Q.; Shen, M. W.; Zhu, M. F.; Lu, X.W.; Shi, X. Y. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym. Chem. 2013, 4, 4412-4424.
doi: 10.1039/c3py00521f
-
[38]
Liu, H.; Wang, H.; Xu, Y. H.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 2014, 6, 4521-4526.
doi: 10.1039/C3NR06694K
-
[39]
Zhang, Y. Q.; Sun, Y. H.; Xu, X. P.; Zhang, X. Z.; Zhu, H.; Huang, L. L.; Qi, Y. J.; Shen, Y. M. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J. Med. Chem. 2010, 53, 3262-3272.
doi: 10.1021/jm901910j
-
[40]
Maxfield, F. R.; Tabas, I., Role of cholesterol and lipid organization in disease. Nature 2005, 438, 612-621.
doi: 10.1038/nature04399
-
[41]
Chen, Q.; Pan, Z.; Zhao, M.; Wang, Q.; Qiao, C.; Miao, L.; Ding, X., High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J. Cell. Physiol. 2018, 233, 6722-6732.
doi: 10.1002/jcp.v233.9
-
[42]
Nelson, E. R., The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol. 2018, 466, 73-80.
doi: 10.1016/j.mce.2017.09.021
-
[43]
Li, L. H.; Guo, K.; Lu, J.; Venkatraman, S. S.; Luo, D.; Ng, K. C.; Ling, E. A.; Moochhala, S.; Yang, Y. Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29, 1509-1517.
doi: 10.1016/j.biomaterials.2007.11.014
-
[44]
Tsai, Y. C.; Vijayaraghavan, P.; Chiang, W. H.; Chen, H. H.; Liu, T. I.; Shen, M. Y.; Omoto, A.; Kamimura, M.; Soga, K.; Chiu, H. C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics 2018, 8, 1435-1448.
doi: 10.7150/thno.22482
-
[45]
Zhou, B. Q.; Xiong, Z. G.; Wang, P.; Peng, C.; Shen, M. W.; Mignani, S.; Majoral, J. P.; Shi, X. Y. Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Deliver. 2018, 25, 178-186.
doi: 10.1080/10717544.2017.1422299
-
[46]
Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem. 2011, 2, 1754-1760.
doi: 10.1039/c1py00179e
-
[47]
Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X., Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011, 32, 3322-3329.
doi: 10.1016/j.biomaterials.2010.12.060
-
[48]
Luo, Y.; Zhao, L. Z.; Li, X.; Yang, J.; Guo, L. L.; Zhang, G. X.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J. Mater. Chem. B 2016, 4, 7220-7225.
doi: 10.1039/C6TB02190E
-
[49]
Yang, J.; Luo, Y.; Xu, Y. H.; Li, J. C.; Zhang, Z. X.; Wang, H.; Shen, M. W.; Shi, X. Y.; Zhang, G. X. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl. Mater. Interfaces 2015, 7, 5420-5428.
doi: 10.1021/am508983n
-
[50]
Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W., Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 2003, 125, 15485-15489.
doi: 10.1021/ja0347383