Citation: Xin-Lei Zhang, Lei Wang, Liang Chen, Xiao-Yu Ma, Hang-Xun Xu. Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x shu

Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation

  • Corresponding author: Hang-Xun Xu, hxu@ustc.edu.cn
  • Received Date: 14 September 2018
    Revised Date: 10 October 2018
    Accepted Date: 1 January 2018
    Available Online: 12 November 2018

  • Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included.
  • 加载中
    1. [1]

      Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 2006, 103(43), 15729-15735.  doi: 10.1073/pnas.0603395103

    2. [2]

      Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38(1), 185-196.  doi: 10.1039/B802262N

    3. [3]

      Lewis, N. S. Introduction: Solar energy conversion. Chem. Rev. 2015, 115(23), 12631-12632.  doi: 10.1021/acs.chemrev.5b00654

    4. [4]

      Crabtree, G. W.; Lewis, N. S. Solar energy conversion. Phys. Today 2007, 60(3), 37-42.  doi: 10.1063/1.2718755

    5. [5]

      Li, H.; Fan, C.; Fu, W.; Xin, H. L.; Chen, H. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics. Angew. Chem. Int. Ed. 2015, 54(3), 956-960.  doi: 10.1002/anie.201408882

    6. [6]

      Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30(20), 1800868.  doi: 10.1002/adma.v30.20

    7. [7]

      Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-effciency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30(6), 1705208.  doi: 10.1002/adma.201705208

    8. [8]

      Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351(6271), aad1920.  doi: 10.1126/science.aad1920

    9. [9]

      Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011, 23(18), 4264-4270.  doi: 10.1021/cm2019586

    10. [10]

      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17(2), 119-128.  doi: 10.1038/nmat5063

    11. [11]

      Wang, X.; Ma, Y.; Sheng, X.; Wang, Y.; Xu, H. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018, 18(4), 2217-2225.  doi: 10.1021/acs.nanolett.7b04675

    12. [12]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138(13), 4657-4664.  doi: 10.1021/jacs.6b01744

    13. [13]

      Zhang, M.; Wang, X. Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 2014, 7(6), 1902-1906.  doi: 10.1039/c3ee44189j

    14. [14]

      Pan, Z.; Zheng, Y.; Guo, F.; Niu, P.; Wang, X. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 2017, 10(1), 87-90.  doi: 10.1002/cssc.201600850

    15. [15]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35(2), 171-183.  doi: 10.1007/s10118-017-1886-9

    16. [16]

      Cao, J. M.; Qian, L.; He, D.; Xiao, Z.; Ding, L. M. D-A Copolymers based on a pentacyclic acceptor unit and a 3, 3'-difluoro-2, 2'-bithiophene for solar cells. Chinese J. Polym. Sci. 2017, 35(12), 1457-1462.  doi: 10.1007/s10118-017-1996-4

    17. [17]

      Wang, Y.; Zhu, W.; Du, W.; Liu, X.; Zhang, X.; Dong, H.; Hu, W. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew. Chem. Int. Ed. 2018, 57(15), 3963-3967.  doi: 10.1002/anie.201712949

    18. [18]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42(20), 8012-8031.  doi: 10.1039/c3cs60160a

    19. [19]

      Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 2008, 47(18), 3450-3453.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 4, 486-488.

    21. [21]

      Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew. Chem. Int. Ed. 2012, 51(51), 12727-12731.  doi: 10.1002/anie.201103493

    22. [22]

      Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, Pi.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 2016, 55(5), 1792-1796.  doi: 10.1002/anie.201510542

    23. [23]

      Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137(9), 3265-3270.  doi: 10.1021/ja511552k

    24. [24]

      Xiao, P.; Xu, Y. Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications. J. Mater. Chem. A 2018, DOI: 10.1039/C8TA02820F.  doi: 10.1039/C8TA02820F

    25. [25]

      Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 2018, 1801955.  doi: 10.1002/adma.201801955

    26. [26]

      Chen, Y.; Jia, G.; Hu, Y.; Fan, G.; Tsang, Y. H.; Li, Z.; Zou, Z. Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. Sustainable Energy Fuels 2017, 1(9), 1875-1898.  doi: 10.1039/C7SE00344G

    27. [27]

      Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 2015, 6(6), 1087-1098.  doi: 10.1021/jz502646d

    28. [28]

      Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater. 2018, 30(1), 1704548.  doi: 10.1002/adma.201704548

    29. [29]

      Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11(3), 218-230.  doi: 10.1038/nnano.2015.340

    30. [30]

      Li, Y.; Li, Y. L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 2017, 7(3), 545-559.  doi: 10.1039/C6CY02178F

    31. [31]

      Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50(74), 10768-10777.  doi: 10.1039/C4CC02553A

    32. [32]

      Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9(10), 768-779.  doi: 10.1038/nnano.2014.207

    33. [33]

      Yang, M. Q.; Zhang, N.; Pagliaro, M.; Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43(24), 8240-8254.  doi: 10.1039/C4CS00213J

    34. [34]

      Zhang, G.; Lana, Z. A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8(8), 5261-5274.  doi: 10.1039/C7SC01747B

    35. [35]

      Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46(8), 1900-1909.  doi: 10.1021/ar300227e

    36. [36]

      Liu, H.; Kan, X. N.; Wu, C. Y.; Pan, Q. Y.; Li, Z. B.; Zhao, Y. J. Synthetic two-dimensional organic structures. Chinese J. Polym. Sci. 2018, 36(4), 425-444.  doi: 10.1007/s10118-018-2070-6

    37. [37]

      Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5(6), 453-465.  doi: 10.1038/nchem.1628

    38. [38]

      Yang, F.; Cheng, S.; Zhang, X.; Ren, X.; Li, R.; Dong, H.; Hu, W. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30(2), 1702415.  doi: 10.1002/adma.v30.2

    39. [39]

      Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Gӧtzinger, S.; Schlüter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 2012, 4(4), 287-291.  doi: 10.1038/nchem.1265

    40. [40]

      Kory, M. J.; Wörle, M.; Weber, T.; Payamyar, P.; Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schlüter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6(9), 779-784.  doi: 10.1038/nchem.2007

    41. [41]

      Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 2014, 6(9), 774-778.  doi: 10.1038/nchem.2008

    42. [42]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016, 116(12), 7159-7329.  doi: 10.1021/acs.chemrev.6b00075

    43. [43]

      Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.; Zhang, Y. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J. Am. Chem. Soc. 2017, 139(34), 11698-11701.  doi: 10.1021/jacs.7b06708

    44. [44]

      Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135(1), 18-21.  doi: 10.1021/ja308249k

    45. [45]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22(22), 4763-4770.  doi: 10.1002/adfm.v22.22

    46. [46]

      Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25(17), 2452-2456.  doi: 10.1002/adma.v25.17

    47. [47]

      Ding, Y.; Chen, Y. P.; Zhang, X.; Chen, L.; Dong, Z.; Jiang, H. L.; Xu, H.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139(27), 9136-9139.  doi: 10.1021/jacs.7b04829

    48. [48]

      Gao, X.; Zhu, Y.; Yi, D.; Zhou, J.; Zhang, S.; Yin, C.; Ding, F.; Zhang, S.; Yi, X.; Wang, J.; Tong, L.; Han, Y.; Liu, Z.; Zhang, J. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4(7), eaat6378.  doi: 10.1126/sciadv.aat6378

    49. [49]

      Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139(34), 11666-11669.  doi: 10.1021/jacs.7b05025

    50. [50]

      Nuraje, N.; Su, K.; Yang, N. I.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2008, 2(3), 502-506.  doi: 10.1021/nn7001536

    51. [51]

      Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015, 137(10), 3450-3453.  doi: 10.1021/ja512018j

    52. [52]

      Bruno, F. F.; Akkara, J. A.; Samuelson, L. A.; Kaplan, D. L.; Mandal, B. K.; Marx, K. A.; Kumar, J.; Tripathy, S. K. Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface. Langmuir 1995, 11(3), 889-892.  doi: 10.1021/la00003a035

    53. [53]

      Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48(22), 2943-2945.

    54. [54]

      Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS Nano 2013, 7(9), 8066-8073.  doi: 10.1021/nn403328h

    55. [55]

      Sahabudeen, H.; Qi, H.; Glatz, B. A.; Tranca, D.; Dong, R.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z.; Feng, X. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461.  doi: 10.1038/ncomms13461

    56. [56]

      Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139(8), 3145-3152.  doi: 10.1021/jacs.6b12776

    57. [57]

      Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135(28), 10470-10474.  doi: 10.1021/ja403464h

    58. [58]

      Yang, Y.; Bu, F.; Liu, J.; Shakir, I.; Xu, Y. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun. 2017, 53(54), 7481-7484.  doi: 10.1039/C7CC02648J

    59. [59]

      Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28(3), 141-145.  doi: 10.1021/ar00051a007

    60. [60]

      Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; Xu, H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater. 2017, 29(38), 1702428.  doi: 10.1002/adma.201702428

    61. [61]

      Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z. Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3(5), 912-919.  doi: 10.1021/cs4000624

    62. [62]

      Ge, L.; Han, C.; Xiao, X.; Guo, L. In situ synthesis of cobalt-phosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities. Appl. Catal. B Environ. 2013, 142, 414-422.

    63. [63]

      Wang, L.; Wan, Y.; Ding, Y.; Niu, Y.; Xiong, Y.; Wu, X.; Xu, H. Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study. Nanoscale 2017, 9(12), 4090-4096.  doi: 10.1039/C7NR00534B

    64. [64]

      Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46(10), 2799-2823.  doi: 10.1039/C6CS00727A

    65. [65]

      Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27(13), 2150-2176.  doi: 10.1002/adma.201500033

    66. [66]

      Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 2016, 8(13), 6904-6920.  doi: 10.1039/C6NR00546B

    67. [67]

      Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118(10), 5201-5241.  doi: 10.1021/acs.chemrev.7b00286

    68. [68]

      Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Ghamdi, A. A. A.; Yu, J. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1(5), 1700080.  doi: 10.1002/smtd.v1.5

    69. [69]

      Zeng, D.; Xu, W.; Ong, W. J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D. L. Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl. Catal. B Environ. 2018, 221, 47-55.  doi: 10.1016/j.apcatb.2017.08.041

    70. [70]

      Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28(12), 2427-2431.  doi: 10.1002/adma.201505281

    71. [71]

      Zhao, W.; Guo, Y.; Wang, S.; He, H.; Sun, C.; Yang, S. A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Appl. Catal. B Environ. 2015, 165, 335-343.  doi: 10.1016/j.apcatb.2014.10.016

    72. [72]

      Zeng, D.; Ong, W. J.; Chen, Y.; Tee, S. Y.; Chua, C. S.; Peng, D. L.; Han, M. Y. Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation. Part. Part. Syst. Charact. 2018, 35(2), 1700251.

    73. [73]

      Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol. RRL 2018, 2(3), 1800006.  doi: 10.1002/solr.v2.3

    74. [74]

      Wang, L.; Zheng, X.; Chen, L.; Xiong, Y.; Xu, H. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem. Int. Ed. 2018, 57(13), 3454-3458.  doi: 10.1002/anie.201710557

    75. [75]

      Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; Pan, Z.; Sun, Z.; Wei, S. Fast photoelectron transfer in (Cring)−C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139(8), 3021-3026.  doi: 10.1021/jacs.6b11878

    76. [76]

      Li, J.; Gao, X.; Liu, B.; Feng, Q.; Li, X. B.; Huang, M. Y.; Liu, Z.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138(12), 3954-3957.  doi: 10.1021/jacs.5b12758

    77. [77]

      Gao, X.; Li, J.; Du, R.; Zhou, J.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z.; Wu, L. Z.; Liu, Z.; Zhang, J. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29(9), 1605308.  doi: 10.1002/adma.201605308

    78. [78]

      Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 2015, 127(8), 2436-2439.  doi: 10.1002/ange.201411170

    79. [79]

      Cometto, C.; Kuriki, R.; Chen, L.; Maeda, K.; Lau, T. C.; Ishitani, O.; Robert, M. A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. J. Am. Chem. Soc. 2018, 140(24), 7437-7440.  doi: 10.1021/jacs.8b04007

    80. [80]

      Dong, G.; Zhang, L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem. 2012, 22(3), 1160-1166.  doi: 10.1039/C1JM14312C

    81. [81]

      Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179, 1-8.  doi: 10.1016/j.apcatb.2015.05.005

    82. [82]

      Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138(15), 5159-5170.  doi: 10.1021/jacs.6b01997

    83. [83]

      Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew. Chem. Int. Ed. 2017, 56(17), 4867-4871.  doi: 10.1002/anie.201701627

    84. [84]

      Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140(4), 1423-1427.  doi: 10.1021/jacs.7b11255

    85. [85]

      Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140(13), 4623-4631.  doi: 10.1021/jacs.8b00571

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    3. [3]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    4. [4]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    10. [10]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    11. [11]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    12. [12]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    17. [17]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(0)
  • Abstract views(709)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return