Citation: Chong He, Xiang Zhu, Xiao-Hong Li, Xiao-Ming Yang, Ying-Feng Tu. Thermodynamics of Aromatic Cyclic Ester Polymerization in Bulk[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 89-93. doi: 10.1007/s10118-018-2161-4 shu

Thermodynamics of Aromatic Cyclic Ester Polymerization in Bulk

  • Corresponding author: Ying-Feng Tu, tuyingfeng@suda.edu.cn
  • Received Date: 19 April 2018
    Revised Date: 11 May 2018
    Accepted Date: 19 May 2018
    Available Online: 14 June 2018

  • We present here the thermodynamic investigation of in situ cascade polycondensation-coupling ring-opening polymerization (PROP) for three cyclic aromatic ester monomers, i.e., cyclic oligo(2-methyl-1,3-propylene terephthalate)s (COMPTs), cyclic oligo(neopentylene terephthalate)s (CONTs) and cyclic oligo(2-methyl-2-propyl-1,3-propylene terephthalate)s (COMPPTs). The equibrium monomer to polymer weight ratio in bulk at different polymerization temperatures for each monomer was estimated by the size exclusion chromatography (SEC), and the thermodynamic parameters were estimated by Dainton equation. Quite different from the thermodynamics of aliphatic lactones polymerization, which is an exothermic process with entropy reduction, our results showed the polymerization thermodynamics for three cyclic aromatic ester monomers was a weak exothermic process with slight entropy increment, i.e., a both enthalpy and entropy driving process. Among them, CONTs showed the largest value of enthalpy change, due to its symmetric dimethyl substitution on β-position of propandiol segments.
  • 加载中
    1. [1]

      Zhao, W.; Cui, D.; Liu, X.; Chen, X. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study. Macromolecules 2010, 43(16), 6678-6684.  doi: 10.1021/ma101202g

    2. [2]

      Pascual, A.; Sardón, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(4), 552-561.  doi: 10.1002/pola.v53.4

    3. [3]

      Jitonnom, J.; Meelua, W. Cationic ring-opening polymerization of cyclic carbonates and lactones by group 4 metallocenes: a theoretical study on mechanism and ring-strain effects. J. Theor. Comput. Chem. 2016, 16(01), 1750003.

    4. [4]

      Lu, M.; Zhu, X.; Li, X.; Yang, X.; Tu, Y. Synthesis of cyclic oligo(ethylene adipate)s and their melt polymerization to poly(ethylene adipate). Chinese J. Polym. Sci. 2017, 35(9), 1051-1060.  doi: 10.1007/s10118-017-1951-4

    5. [5]

      Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci. 2017, 35(5), 581-601.  doi: 10.1007/s10118-017-1925-6

    6. [6]

      Pascual, A.; Sardon, H.; Veloso, A.; Ruipérez, F.; Mecerreyes, D. Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate: a cheap and renewable macrolactone. ACS Macro Lett. 2014, 3(9), 849-853.  doi: 10.1021/mz500401u

    7. [7]

      Pascual, A.; Sardón, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(4), 552-561.  doi: 10.1002/pola.v53.4

    8. [8]

      Ofstead, E. A.; Calderon, N. Equilibrium ring-opening polymerization of mono- and multicyclic unsaturated monomers. Makromol. Chem. 1972, 154(1), 21-34.  doi: 10.1002/macp.1972.021540102

    9. [9]

      Duda, A.; Kowalski, A.; Libiszowski, J.; Penczek, S. Thermodynamic and kinetic polymerizability of cyclic esters. Macromol. Symp. 2005, 224(1), 71-84.  doi: 10.1002/(ISSN)1521-3900

    10. [10]

      Li, X.; Li, H.; Zhao, Y.; Tang, X.; Ma, S.; Gong, B.; Li, M. Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polym. Chem. 2015, 6(36), 6452-6456.  doi: 10.1039/C5PY00762C

    11. [11]

      Schneiderman, D. K.; Hillmyer, M. A. Aliphatic polyester block polymer design. Macromolecules 2016, 49(7), 2419-2428.  doi: 10.1021/acs.macromol.6b00211

    12. [12]

      Steele, R. in Polyester: 50 years of achievement, Brunnschweiler, D. and Hearle, J. S. (Eds), The Textile Institute, manchester, UK, 1993, pp. 48-51.

    13. [13]

      Turner, S. R.; Voit, B. I.; Mourey, T. H. All-aromatic hyperbranched polyesters with phenol and acetate end groups: synthesis and characterization. Macromolecules 1993, 26(17), 4617-4623.  doi: 10.1021/ma00069a031

    14. [14]

      Brunelle, D. J.; Boden, E. P.; Shannon, T. G. Remarkably selective formation of macrocyclic aromatic carbonates: versatile new intermediates for the synthesis of aromatic polycarbonates. J. Am. Chem. Soc. 1990, 112(6), 2399-2402.  doi: 10.1021/ja00162a049

    15. [15]

      Brunelle, D. J.; Bradt, J. E.; Serth-Guzzo, J.; Takekoshi, T.; Evans, T. L.; Pearce, E. J.; Wilson, P. R. Semicrystalline polymers via ring-opening polymerization: preparation and polymerization of alkylene phthalate cyclic oligomers. Macromolecules 1998, 31(15), 4782-4790.  doi: 10.1021/ma971491j

    16. [16]

      Brunelle, D. J. Cyclic oligomer chemistry. J. Polym. Sci., Part A: Polym.Chem. 2008, 46(4),1151-1164.  doi: 10.1002/pola.v46:4

    17. [17]

      Monvisade, P.; Loungvanidprapa, P. Synthesis of poly(ethylene terephthalate-co-isophthalate) via ring-opening polymerization of their cyclic oligomers. J. Polym. Res. 2008, 15(5), 381-387.  doi: 10.1007/s10965-008-9182-6

    18. [18]

      Conzatti, L.; Utzeri, R.; Hodge, P.; Stagnaro, P. A novel tin-based imidazolium-modified montmorillonite catalyst for the preparation of poly(butylene terephthalate)-based nanocomposites using in situ entropically-driven ring-opening polymerization. RSC Adv. 2015, 5(8), 6222-6231.  doi: 10.1039/C4RA12983K

    19. [19]

      Pepels, M. P. F.; van der Sanden, F.; Gubbels, E.; Duchateau, R. Catalytic ring-opening (co)polymerization of semiaromatic and aliphatic (macro)lactones. Macromolecules 2016, 49(12), 4441-4451.  doi: 10.1021/acs.macromol.6b00744

    20. [20]

      Carlos Morales-Huerta, J.; Martínez de Ilarduya, A.; Muñoz-Guerra, S. Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer 2016, 87, 148-158.  doi: 10.1016/j.polymer.2016.02.003

    21. [21]

      Sousa, A. F.; Guigo, N.; Pozycka, M.; Delgado, M.; Soares, J.; Mendonca, P. V.; Coelho, J. F. J.; Sbirrazzuoli, N.; Silvestre, A. J. D. Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polym. Chem. 2018, 9(6), 722-731.  doi: 10.1039/C7PY01627A

    22. [22]

      Morales-Huerta, J. C.; Ilarduya, A.; Muñoz-Guerra, S. Blocky poly(ε-caprolactone-co-butylene 2,5-furandicarboxylate) copolyesters via enzymatic ring opening polymerization. J. Polym. Sci., Part A: Polym. Chem. 2018, 56(3), 290-299.  doi: 10.1002/pola.v56.3

    23. [23]

      Wu, J.; Xie, H.; Wu, L.; Li, B.; Dubois, P. DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Adv. 2016, 6(103), 101578-101586.  doi: 10.1039/C6RA21135F

    24. [24]

      Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19(20), 4737-4753.  doi: 10.1039/C7GC02521A

    25. [25]

      Xu, Q.; Chen, J.; Huang, W.; Qu, T.; Li, X.; Li, Y.; Yang, X.; Tu, Y. One pot, one feeding step, two-stage polymerization synthesis and characterization of (PTT-b-PTMO-b-PTT)n multiblock copolymers. Macromolecules 2013, 46(18), 7274-7281.  doi: 10.1021/ma400969a

    26. [26]

      Chen, J.; Chen, D.; Huang, W.; Yang, X.; Li, X.; Tu, Y.; Zhu, X. A one pot facile synthesis of poly(butylene terephthalate)-block-poly(tetramethylene oxide) alternative multiblock copolymers via PROP method. Polymer 2016, 107, 29-36.  doi: 10.1016/j.polymer.2016.11.001

    27. [27]

      Zhu, X.; Gu, J.; Li, X.; Yang, X.; Wang, L.; Li, Y.; Li, H.; Tu, Y. PROP: an in situ cascade polymerization method for the facile synthesis of polyesters. Polym. Chem. 2017, 8(12), 1953-1962.  doi: 10.1039/C7PY00068E

    28. [28]

      Zhang, M.; Gu, J.; Zhu, X.; Gao, L.; Li, X.; Yang, X.; Tu, Y.; Li, C. Y. Synthesis of poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) multiblock terpolymers via a facile PROP method. Polymer 2017, 130, 199-208.  doi: 10.1016/j.polymer.2017.10.010

    29. [29]

      Chen, J.; Huang, W.; Xu, Q.; Tu, Y.; Zhu, X.; Chen, E. PBT-b-PEO-b-PBT triblock copolymers: Synthesis, characterization and double-crystalline properties. Polymer 2013, 54(25), 6725-6731.  doi: 10.1016/j.polymer.2013.10.043

    30. [30]

      Pepels, M. P.; van der Sanden, F.; Gubbels, E.; Duchateau, R. Catalytic ring-opening (co) polymerization of semiaromatic and aliphatic (macro) lactones. Macromolecules 2016, 49(12), 4441-4451.  doi: 10.1021/acs.macromol.6b00744

    31. [31]

      Duda, A.; Penczek, S. Thermodynamics, kinetics, and mechanisms of cyclic esters polymerization. In Polymers from Renewable Resources, American Chemical Society. 2001, Vol. 764, pp 160-198.

    32. [32]

      Nishida, H.; Yamashita, M.; Endo, T.; Tokiwa, Y. Equilibrium polymerization behavior of 1,4-dioxan-2-one in bulk. Macromolecules 2000, 33(19), 6982-6986.  doi: 10.1021/ma000457t

    33. [33]

      Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 2005, 38(17), 7214-7218.  doi: 10.1021/ma0501287

    34. [34]

      Burch, R. R.; Lustig, S. R.; Spinu, M. Synthesis of cyclic oligoesters and their rapid polymerization to high molecular weight. Macromolecules 2000, 33(14), 5053-5064.  doi: 10.1021/ma000278b

    35. [35]

      Scheirs, J. and Long, T. E. in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons, 2005.

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    7. [7]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    8. [8]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    11. [11]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    12. [12]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    13. [13]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    14. [14]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    18. [18]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    19. [19]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    20. [20]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

Metrics
  • PDF Downloads(0)
  • Abstract views(769)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return