Citation: Quan-You Feng, Bin Li, Zong-Yan Zuo, Song-Lin Xie, Meng-Na Yu, Bin Liu, Ying Wei, Ling-Hai Xie, Rui-Dong Xia, Wei Huang. A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 11-17. doi: 10.1007/s10118-018-2152-5 shu

A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer

  • Corresponding author: Ling-Hai Xie, iamlhxie@njupt.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 26 March 2018
    Revised Date: 4 May 2018
    Accepted Date: 5 May 2018
    Available Online: 1 June 2018

  • Rare attention has been paid to the comparison between a monomer and its corresponding polymer in terms of the optoelectronic characteristics. In this article, a model H-shaped molecule and its corresponding polymer, both of which exhibited similar properties including blue emission and solution processing, were designed and synthesized. Optoelectronic properties and various kinds of stability features, including the thermostabilities, spectral stabilities and amplified spontaneous emission characteristic of the monomer and polymer were investigated. In general, the corresponding polymer PH exhibited similar optoelectronic properties but deteriorated stabilities compared with its H-shaped monomer H-1 probably owing to the similar chemical structure but the wider molecular weight distribution and metal catalyst residue. Importantly, monomer H-1 displayed a comparable ASE threshold value with its polymer PH , suggesting that H-shaped fluorene-based small molecules may be more promising optical gain media in solid state amplifers and lasers.
  • 加载中
    1. [1]

      Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog. Polym. Sci. 2012, 37(9), 1192-1264.  doi: 10.1016/j.progpolymsci.2012.02.003

    2. [2]

      Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S. M.; Grätzel, M. ; Wang, P. Dye-sensitized solar cells with solvent-free ionic liquid electrolytes. J. Phys. Chem. C 2008, 112(35), 13775-13781.  doi: 10.1021/jp805027v

    3. [3]

      Feldblyum, J. I.; Mccreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Commun. 2015, 51(73), 13894-13897.  doi: 10.1039/C5CC04679C

    4. [4]

      White, M. S.; Kaltenbrunner, M.; Głowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C.; Major, Z.; Scharber, M. C.; Sekitani, T.; Someya, T.; Bauer, S.; Sariciftci, N. S. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 2013, 7(10), 811-816.  doi: 10.1038/nphoton.2013.188

    5. [5]

      Sun, M. L.; Zhong, C. M.; Li, F. ; Pei, Q. B. Purified polar polyfluorene for light-emitting diodes and light-emitting electrochemical cells. Chinese J. Polym. Sci. 2012, 30(4), 503-510.  doi: 10.1007/s10118-012-1132-4

    6. [6]

      Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109(3), 897-1091.  doi: 10.1021/cr000013v

    7. [7]

      Prasad, L. G. Azo dye doped polymer films for nonlinear optical applications. Chinese J. Polym. Sci. 2014, 32(5), 650-657.  doi: 10.1007/s10118-014-1441-x

    8. [8]

      Ford, E. B.; Lystad, V.; Rasio, F. A. Planet-planet scattering in the upsilon Andromedae system. Nature 2005, 434(7035), 873-876.  doi: 10.1038/nature03427

    9. [9]

      Wei, Q.; Li, Y.; Liu, J. G.; Fang, Q. Y.; Li, J. W.; Yan, X. H.; Xie, L. H.; Qian, Y.; Xia, R. D.; Huang, W. A High performance deep blue organic laser gain material. Adv. Opt. Mater. 2017, 5(8), 1601003.  doi: 10.1002/adom.201601003

    10. [10]

      Samuel, I. D. W.; Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 2007, 107(4), 1272-1295.  doi: 10.1021/cr050152i

    11. [11]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35(2), 171-183.  doi: 10.1007/s10118-017-1886-9

    12. [12]

      Brabec, C. J.; Gowrisanker, S.; Halls, J. J.; Laird, D.; Jia, S.; Williams, S. P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2010, 22(34), 3839-3856.  doi: 10.1002/adma.200903697

    13. [13]

      Guenes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107(4), 1324-1338.  doi: 10.1021/cr050149z

    14. [14]

      Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 2005, 17(20), 2411-2425.  doi: 10.1002/(ISSN)1521-4095

    15. [15]

      Hamadani, B. H.; Natelson, D. Temperature-dependent contact resistances in high-quality polymer field-effect transistors. Appl. Phys. Lett. 2004, 84(3), 443-445.  doi: 10.1063/1.1639945

    16. [16]

      Yap, B. K.; Xia, R. D.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 2008, 7(5), 376-380.  doi: 10.1038/nmat2165

    17. [17]

      Yu, M. N.; Ou, C. J.; Liu, B.; Lin, D. Q.; Liu, Y. Y.; Xue, W.; Lin, Z. Q.; Lin, J. Y.; Qian, Y.; Wang, S. S.; Cao, H. T.; Bian, L. Y.; Xie, L. H.; Huang, W. Progress in fluorene-based wide-bandgap steric semiconductors. Chinese J. Polym. Sci. 2017, 35(2), 155-170.  doi: 10.1007/s10118-017-1897-6

    18. [18]

      Rabe, T.; Hoping, M.; Schneider, D.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Weimann, T.; Wang, J.; Hinze, P.; Nehls, B. S.; Scherf, U.; Farrell, T. ; Riedl, T. Threshold reduction in polymer lasers based on poly(9,9-dioctylfluorene) with statistical binaphthyl units. Adv. Funct. Mater. 2005, 15(7), 1188-1192.  doi: 10.1002/(ISSN)1616-3028

    19. [19]

      Kuehne, A. J. C.; Kaiser, M.; Mackintosh, A. R.; Wallikewitz, B. H.; Hertel, D.; Pethrick, R. A.; Meerholz, K. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): dual-wavelength lasing from a mixed-morphology device. Adv. Funct. Mater. 2011, 21 (13), 2564-2570.  doi: 10.1002/adfm.201002553

    20. [20]

      Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquid-crystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998, 49(8), 439-444.  doi: 10.1002/(ISSN)1521-4044

    21. [21]

      Kuehne, A. J. C.; Mackintosh, A. R.; Pethrick, R. A. β-Phase formation in a crosslinkable poly(9,9-dihexylfluorene). Polymer. 2011, 52(24), 5538-5542.  doi: 10.1016/j.polymer.2011.09.044

    22. [22]

      Lin, J. Y.; Zhu, W. S.; Liu, F.; Xie, L. H.; Zhang, L.; Xia, R. D.; Xing, G. C.; Huang, W. A Rational molecular design of β-phase polydiarylfluorenes: synthesis, morphology, and organic lasers. Macromolecules. 2014, 47 (3), 1001-1007.  doi: 10.1021/ma402585n

    23. [23]

      Liu, B.; Lin, J. Y.; Liu, F.; Yu, M. N.; Zhang, X.W.; Xia, R. D.; Yang, T.; Fang, Y. T.; Xie, L. H.; Huang, W. A Highly Crystalline and wide-bandgap polydiarylfluorene with beta-phase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 2016, 8 (33), 21648-21655.  doi: 10.1021/acsami.6b05247

    24. [24]

      Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32(18), 5810-5817.  doi: 10.1021/ma990741o

    25. [25]

      Knaapila, M.; Torkkeli, M.; Galbrecht, F.; Scherf, U. Crystalline and noncrystalline forms of poly(9,9-diheptylfluorene). Macromolecules 2013, 46(3), 836-843.  doi: 10.1021/ma3023124

    26. [26]

      Chen, S. H.; Su, A. C.; Su, C. H. ; Chen, S. A. Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 2005, 38(2), 379-385.  doi: 10.1021/ma048162t

    27. [27]

      Tang, R. P.; Tan, Z. A.; Li, Y. F.; Xi, F. Synthesis of new conjugated polyfluorene derivatives bearing triphenylamine moiety through a vinylene bridge and their stable blue electroluminescence. Chem. Mater. 2006, 18(4), 1053-1061.  doi: 10.1021/cm0522735

    28. [28]

      Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers. J. Am. Chem. Soc. 2001, 123(5), 946-953.  doi: 10.1021/ja0031220

    29. [29]

      Lee, J.; Cho, H. J.; Jung, B. J.; Cho, N. S.; Shim, H. K. Stabilized blue luminescent polyfluorenes: Introducing polyhedral oligomeric silsesquioxane. Macromolecules 2004, 37(23), 8523-8529.  doi: 10.1021/ma0497759

    30. [30]

      Jiang, Z.; Liu, Z.; Yang, C.; Zhong, C.; Qin, J.; Yu, G.; Liu, Y. Multifunctional fluorene-based oligomers with novel spiro-annulated triarylamine: efficient, stable deep-blue electroluminescence, good hole injection, and transporting materials with very high Tg. Adv. Funct. Mater. 2009, 19(24), 3987-3995.  doi: 10.1002/(ISSN)1616-3028

    31. [31]

      Wu, Y. G.; Li, J.; Fu, Y. Q.; Bo, Z. S. Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with suzuki polycondensation. Org. Lett. 2004, 6(20), 3485-3487.  doi: 10.1021/ol048709o

    32. [32]

      Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: Highly fluorescent star-shaped architectures. J. Am. Chem. Soc. 2004, 126(42), 13695-13702.  doi: 10.1021/ja039228n

    33. [33]

      Zhou, X. H.; Yan, J. C.; Pei, J. Synthesis and relationships between the structures and properties of monodisperse star-shaped oligofluorenes. Org. Lett. 2003, 5(19), 3543-3546.  doi: 10.1021/ol035461e

    34. [34]

      Liu, X. M.; Xu, J. W.; Lu, X. H.; He, C. B. Novel glassy tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as building blocks for efficient and nonaggregating blue-light-emitting tetrahedral materials. Org. Lett. 2005, 7 (14), 2829-2832.  doi: 10.1021/ol050687y

    35. [35]

      Chen, X. W.; Tseng, H. E.; Liao, J. L.; Chen, S. A. Green emission from end-group-enhanced aggregation in polydioetylfluorene. J. Phys. Chem. B 2005, 109(37), 17496-17502.  doi: 10.1021/jp052549w

    36. [36]

      Qian, Y.; Wei, Q.; Del Pozo, G.; Mroz, M. M.; Luer, L.; Casado, S.; Cabanillas-Gonzalez, J.; Zhang, Q.; Xie, L.; Xia, R. ; Huang, W. H-shaped oligofluorenes for highly air-stable and low-threshold non-doped deep blue lasing. Adv. Mater. 2014, 26 (18), 2937-2942.  doi: 10.1002/adma.v26.18

    37. [37]

      Xie, L. H.; Hou, X. Y.; Tang, C.; Hua, Y. R.; Wang, R. J.; Chen, R. F.; Fan, Q. L.; Wang, L. H.; Wei, W.; Peng, B.; Huang, W. Novel H-shaped persistent architecture based on a dispiro building block system. Org. Lett. 2006, 8(7), 1363-1366.  doi: 10.1021/ol060109x

    38. [38]

      Zhao, L.; Wang, S. M.; Shao, S. Y.; Ding, J. Q.; Wang, L. X.; Jing, X. B.; Wang, F. S. Stable and efficient deep-blue terfluorenes functionalized with carbazole dendrons for solution-processed organic light-emitting diodes. J. Mater. Chem. C 2015, 3 (34), 8895-8903.  doi: 10.1039/C5TC01711D

    39. [39]

      Li, M.; Tang, S.; Shen, F. Z.; Liu, M. R.; Xie, W. J.; Xia, H.; Liu, L. L.; Tian, L. L.; Xie, Z. Q.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. G. Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem. Commun. 2006, 3393-3395.  doi: 10.1039/b607242a

    40. [40]

      Ou, C. J.; Ding, X. H.; Li, Y. X.; Zhu, C.; Yu, M. N.; Xie, L. H.; Lin, J. Y.; Xu, C. X.; Huang, W. Conformational effect of polymorphic terfluorene on photophysics, crystal morphologies, and lasing behaviors. J. Phys. Chem. C 2017, 121(27), 14803-14810.  doi: 10.1021/acs.jpcc.7b03366

    41. [41]

      Giovanella, U.; Botta, C.; Galeotti, F.; Vercelli, B.; Battiato, S.; Pasini, M. Perfluorinated polymer with unexpectedly efficient deep blue electroluminescence for full-colour OLED displays and light therapy applications. J. Mater. Chem. C 2013, 1(34), 5322-5329.  doi: 10.1039/c3tc31139b

    42. [42]

      Yu, M. N.; Soleimaninejad, H.; Lin, J. Y.; Zuo, Z. Y.; Liu, B.; Bo, Y. F.; Bai, L. B.; Han, Y. M.; Smith, T. A.; Xu, M.; Wu, X. P.; Dunstan, D. E.; Xia, R. D.; Xie, L. H.; Bradley, D. D. C.; Huang, W. Photophysical and fluorescence anisotropic behavior of polyfluorene β-conformation films. J. Phys. Chem. Lett. 2018, 9(2), 364-372.  doi: 10.1021/acs.jpclett.7b03148

  • 加载中
    1. [1]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    2. [2]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    3. [3]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    7. [7]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    8. [8]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    9. [9]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    10. [10]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    11. [11]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    12. [12]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    13. [13]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    14. [14]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    15. [15]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    16. [16]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    17. [17]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

Metrics
  • PDF Downloads(0)
  • Abstract views(837)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return