Citation: Xiang-Li Meng, Gen-Hua Yu, Jian Ma. Preparation and Properties of Poly(aryl ether sulfone ketone) Ultrafiltration Membrane Containing Fluorene Group for High Temperature Condensed Water Treatment[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 970-978. doi: 10.1007/s10118-018-2142-7 shu

Preparation and Properties of Poly(aryl ether sulfone ketone) Ultrafiltration Membrane Containing Fluorene Group for High Temperature Condensed Water Treatment

  • Corresponding author: Xiang-Li Meng, mengxl2009@hit.edu.cn
  • Received Date: 13 March 2017
    Revised Date: 5 April 2018
    Accepted Date: 7 April 2018
    Available Online: 11 May 2018

  • Novel poly(aryl ether sulfone ketone)s (PAESK) were synthesized from bisphenol A (BPA), 9,9′-bis(4-hydroxyphenyl) fluorene (BHPF), 4,4′-dichlorodiphenylsulfone (DCS) and 4,4′-difluorobenzophenone (DFB) via nucleophilic substitution polymerization, which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment. The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability, can be easily cast into flexible, white and non-transparent flat films. The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail. SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section. Pure water flux of the membranes increased from 71.87 L·m−2·h−1 to 247.65 L·m−2·h−1, while the retention of BSA decreased slightly, and the water contact angle decreased from 82.1° to 55.6° with the PVP concentration from 0 wt% to 10 wt%. With increasing concentration of PVP, the mechanical properties of membranes decreased, while the thermal stability increased. The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.
  • 加载中
    1. [1]

      Zhao, S. S.; Wang, P.; Wang, C.; Sun, X.; Zhang, L. H. Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment. Desalination 2012, 299, 35−43  doi: 10.1016/j.desal.2012.05.013

    2. [2]

      Leng, S. Purifying techniques of condensed water. Ind. Water Treat. 2010, 30, 64−67

    3. [3]

      Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 2006, 51, 1389−1406  doi: 10.1111/fwb.2006.51.issue-8

    4. [4]

      Verones, F.; Hanafish, M. M.; Pfister, S.; Huijbregts, M. A. J.; Pelletier G. J.; Koehler, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010, 44, 9364−9369  doi: 10.1021/es102260c

    5. [5]

      Arieli, R. N.; Labin, A. A.; Abramovich, S.; Herut, B. The effect of thermal pollution on benthic foraminiferal assemblages in the mediterranean shoreface adjacent to Hadera power plant (Israel). Mar. Pollut. Bull. 2011, 62, 1002−1012  doi: 10.1016/j.marpolbul.2011.02.036

    6. [6]

      Zhai, J. W.; Luo, M.; Wang, D.; Wu, Z. Z.; Wu, D. W. Application of high-temperature tolerance membrane in condensation water deep purification and treatment. Chem. Ind. Eng. Prog. 2009, 28, 69−71

    7. [7]

      Yeon, K. H.; Song, J. H.; Moon, S. H. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of nuclear power plant. Water Res. 2004, 38, 1911−1921  doi: 10.1016/j.watres.2004.01.003

    8. [8]

      Lim, T. T.; Huang, X. F. Evaluation of hydrophobicity/ oleophilicity of kapok and its performance in oily water filtration: Comparison of raw and solvent-treated fivers. Ind. Crops Prod. 2007, 26, 125−134  doi: 10.1016/j.indcrop.2007.02.007

    9. [9]

      Strathmann, H. Synthetic membranes and their preparation. Noyes Publications, New Jersey, 1990

    10. [10]

      Coutinho, C. M.; Chiu, M. C.; Basso, R. C.; Ribeiro, A. P. B.; Goncalves, L. A. G.; Viotto, L.A. State of art of the application of membrane technology to vegetable oils: A review. Food Res. Int. 2009, 42, 536−550  doi: 10.1016/j.foodres.2009.02.010

    11. [11]

      Yang, D. L.; Jin, Z.; Zhang, S. H.; Jian, X. G. Preparation and characterazition of poly(phthalazinone ether sulfone ketone) hollow fiber ultrafiltration membrane with high-molecular weight cut-off. J. Membr. Sci. 2007, 306, 253−260  doi: 10.1016/j.memsci.2007.08.044

    12. [12]

      Yun, Y. B.; Tian, Y. H.; Shi, G. L.; Li, J. D.; Chen, C. X. Preparation, morphologies and properties for flat sheet PPESK ultrafiltration membranes. J. Membr. Sci. 2006, 270, 146−153  doi: 10.1016/j.memsci.2005.06.050

    13. [13]

      Jian, X. G.; Yan, C.; Zhang, H. M.; Zhang, S. H.; Liu, C.; Zhao, P. Syethesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion exchange membrane. Chin. Chem. Lett. 2007, 18, 1269−1272  doi: 10.1016/j.cclet.2007.08.022

    14. [14]

      Sun, W. N.; Chen, C. X.; Li, J. D.; Lin, Y. Z. Ultrafiltration membrane formation of PES-C, PES and PPESK polymers with different solvents. Chinese J. Polym. Sci. 2009, 27, 165−172  doi: 10.1142/S0256767909003790

    15. [15]

      Zhu, L. P.; Xu, Y. Y.; Wei, X. Z.; Zhu, B. K. Hydrophilic modification of poly(phthalazine ether sulfone ketone) ultrafiltration membranes by the surface immobilization of poly(ethylene glycol) acrylates. Desalination 2009, 242, 96−109  doi: 10.1016/j.desal.2008.03.034

    16. [16]

      Shimura, T.; Miyatake, K.; Watanabe, M. Poly(arylene ether) ionomers containing sulfofluorenyl groups: Effect of electron-withdrawing groups on the properties. Eur. Polym. J. 2008, 44, 4054−4062  doi: 10.1016/j.eurpolymj.2008.09.017

    17. [17]

      Harrison, W. L.; Wang, F.; Mecham, J. B.; Bhanu, V. A.; Hill, M.; Kim, Y. S.; McGrath, J. E. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2264−2276

    18. [18]

      Zhu, L. P.; Du, C. H.; Xu, L.; Feng, Y. X.; Zhu, B. K.; Xu, Y. Y. Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. Eur. Polym. J. 2007, 43, 1383−1393  doi: 10.1016/j.eurpolymj.2007.01.037

    19. [19]

      Palaniappan, S. Benzoyl peroxide as a novel oxidizing agent in polyaniline dispersion: Synthesis and characterization of a pure polyaniline−poly(vinyl pyrrolidone) composite. J. Appl. Polym. Sci. 2008, 108, 825−832  doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Chakrabarty, B.; Ghoshal, A. K.; Purkait, A. K. Preparation, Characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 2008, 315, 36−47  doi: 10.1016/j.memsci.2008.02.027

    21. [21]

      Han, M. J.; Nam, S. T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J. Membr. Sci. 2002, 202, 55−61  doi: 10.1016/S0376-7388(01)00718-9

    22. [22]

      Smolders, C. A.; Reuvers, A. J.; Boom, R. M.; Wienk, I. M. Microstructures in phase inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 1992, 73, 259−275  doi: 10.1016/0376-7388(92)80134-6

    23. [23]

      Liu, H. Y.; Zhang, G. Q.; Zhao, C. Q.; Liu, J. D.; Yang, F. L. Hydraulic power and electric field combined antifouling effect of a novel conductive poly(aminoanthraquinone)/reduced grapheme oxide nanohybrid blended PVDF ultrafiltration membrane. J. Mater. Chem. A 2015, 3, 20277−20287  doi: 10.1039/C5TA05306D

  • 加载中
    1. [1]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    2. [2]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    8. [8]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    9. [9]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    10. [10]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    11. [11]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    12. [12]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    13. [13]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    14. [14]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    15. [15]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    16. [16]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    17. [17]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

Metrics
  • PDF Downloads(0)
  • Abstract views(624)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return