Citation: Xiao-Long Shen, Zi-Qing Wang, Qing-Yin Wang, Shao-Ying Liu, Gong-Ying Wang. Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by Ca/SBA-15 Solid Base[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1027-1035. doi: 10.1007/s10118-018-2137-4 shu

Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by Ca/SBA-15 Solid Base

  • Corresponding author: Gong-Ying Wang, wanggongying1102@126.com
  • Received Date: 5 December 2017
    Revised Date: 22 March 2018
    Accepted Date: 26 March 2018
    Available Online: 25 April 2018

  • Ca/SBA-15 solid bases with different Ca/Si atomic ratios were prepared by a one-pot route and employed as catalysts for the production of poly(isosorbide carbonate) (PIC) from diphenyl carbonate and isosorbide via a transesterification polymerization process. The relationship between physicochemical properties and catalytic performance for Ca/SBA-15 in this melt process was investigated by means of various characterization techniques. It was found that basic site amount and strength were responsible for this transesterification process; the weak and medium basic sites inclined to promote polycondensation reaction. It was worth noting that strong basic sites could favor the decomposition of the resultant PIC, resulting in the decrease of weight-average molecular weight (Mw) and yield, and the sample with Ca/Si atomic ratio of 0.4 exhibited the best catalytic performance, giving PIC with Mw of 4.88 × 104 g/mol and Tg of 169 °C at the optimal conditions. This excellent activity can be ascribed to the presence of rich basic sites and specific basic strength on the surface of 0.4Ca/SBA-15.
  • 加载中
    1. [1]

      Oyarzabal, A.; Cristiano-Tassi, A.; Laredo, E.; Newman, D.; Bello, A.; Etxeberría, A.; Eguiazabal, J. I.; Zubitur, M.; Mugica, A.; Müller, A. J. Dielectric, mechanical and transport properties of bisphenol A polycarbonate/graphene nanocomposites prepared by melt blending. J. Appl. Polym. Sci. 2017, 134(13), 44654−44667  doi: 10.1002/APP.44654

    2. [2]

      Zhao, H. M.; Jiang, M. J.; Tian, H. S. NaOH and TEAH catalyzed polycarbonate synthesis through melt transesterification and the rearrangement prodouts in both processes. Acta Polymerica Sinica (in Chinese) 2011, (2), 192−197  doi: 10.3724/SP.J.1105.2011.10025

    3. [3]

      Song, Q. L.; Wen, H. Y.; Christiansen, J. D.; Yu, D. H.; Chen, C. S.; Jiang, S. C. Analysis of structure transition and compatibility of PTT/PC blend without transesterification. Chinese J. Polym. Sci. 2016, 34(9), 1172−1182  doi: 10.1007/s10118-016-1820-6

    4. [4]

      Hao, Y. P.; Yang, H. L.; Zhang, G. B.; Zhang, H. L.; Gao, G.; Dong, L. S. Rheological, thermal and mechanical properties of biodegradable poly(propylene carbonate)/polylactide/poly(1,2-propylene glycol adipate) blown films. Chinese J. Polym. Sci. 2015, 33(12), 1702−1712  doi: 10.1007/s10118-015-1714-z

    5. [5]

      Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J. P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A. M.; Pussemier, L.; Scippo, M. L. A review of dietary and non-dietary exposure to bisphenol-A. Fd. Chem. Toxicol. 2012, 50(10), 3725−3740  doi: 10.1016/j.fct.2012.07.059

    6. [6]

      Gubbels, E.; Jasinska-Walc, L.; Koning, C. E. Synthesis and characterization of novel renewable polyesters based on 2,5-furandicarboxylic acid and 2,3-butanediol. J. Polym. Sci., Part A: Polym. Chem. 2013, 51(4), 890−898  doi: 10.1002/pola.26446

    7. [7]

      Li, C.; Dai, J. Y.; Liu, X. Q.; Jiang, Y. H.; Ma, S. Q.; Zhu, J. Green synthesis of a bio-based epoxy curing agent from isosorbide in aqueous condition and shape memory properties investigation of the cured resin. Macromol. Chem. Phys. 2016, 217(13), 1439−1447  doi: 10.1002/macp.v217.13

    8. [8]

      Wang, J. G.; Liu, X. Q.; Zhang, Y. J.; Liu, F.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1−8  doi: 10.1016/j.polymer.2016.09.030

    9. [9]

      Deng, J.; Liu, X. Q.; Li, C.; Jiang, Y. H.; Zhu, J. Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Adv. 2015, 5(21), 15930−15939  doi: 10.1039/C5RA00242G

    10. [10]

      Dai, J. Y.; Ma, S. Q.; Teng, N.; Dai, X. Y.; Shen, X. B.; Wang, S.; Liu, X. Q.; Zhu, J. 2,5-Furandicarboxylic acid- and itaconic acid-derived fully biobased unsaturated polyesters and their cross-linked networks. Ind. Eng. Chem. Res. 2017, 56(10), 2650−2657  doi: 10.1021/acs.iecr.7b00049

    11. [11]

      Kricheldorf, H. R. " Sugar diols” as building blocks of polycondensates. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1997, C37(4), 599−631  doi: 10.1080/15321799708009650

    12. [12]

      Fenouillot, F. F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J. P. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci. 2010, 35(5), 578−622  doi: 10.1016/j.progpolymsci.2009.10.001

    13. [13]

      Bersot, J. C.; Jacquel, D.; Saint-Loup, P.; Fuertes, P.; Rousseau, A.; Pascault, J. P.; Spitz, R.; Fenouillot, F.; Monteil, V. Efficiency increase of poly(ethylene terephthalate-co-isosorbide terephthalate) synthesis using bimetallic catalytic systems. Macromol. Chem. Phys. 2011, 212(19), 2114−2120  doi: 10.1002/macp.v212.19

    14. [14]

      Gioia, C.; Vannini, M.; Marchese, P.; Minesso, A.; Cavalieri, R.; Colonna, M.; Celli, A. Sustainable polyesters for powder coating applications from recycled PET, isosorbide and succinic acid. Green Chem. 2014, 16(4), 1807−1815  doi: 10.1039/C3GC42122H

    15. [15]

      Caouthar, A. A.; Loupy, A.; Bortolussi, M.; Blais, J. C.; Dubreucq, L.; Meddour, A. Synthesis and characterization of new polyamides based on diphenylaminoisosorbide. Polym. Chem. 2005, 43(24), 6480−6491  doi: 10.1002/pola.21116

    16. [16]

      Wroblewska, A.; Zych, A.; Thiyagarajan, S.; Dudenko, D.; van Es, D.; Hansen, M. R.; Koning, C.; Duchateau, R.; Jasinska-Walc, L. Towards sugar-derived polyamides as environmentally friendly materials. Polym. Chem. 2015, 6(22), 4133−4143  doi: 10.1039/C5PY00521C

    17. [17]

      Lee, C. H.; Kato, M.; Usuki, A. Preparation and properties of bio-based polycarbonate/clay nanocomposites. J. Mater. Chem. A 2011, 21(19), 6844−6847  doi: 10.1039/c1jm10087d

    18. [18]

      Chatti, S.; Schwarz, S.; Kricheldorf, H. R. Crclic and noncylic polycarbonates of isosorbide (1,4:3,6-dianhydro-D-glucitol). Macromolecules 2006, 39(26), 9064−9070  doi: 10.1021/ma0606051

    19. [19]

      Feng, L.; Zhu, W. X.; Li, C. C.; Guan, G. H.; Zhang, D.; Xiao, Y. N.; Zheng, L. C. A high-molecular-weight and high-Tg poly(ester carbonate) partially based on isosorbide: synthesis and structure-property relationships. Polym. Chem. 2014, 6(4), 633−642  doi: 10.1039/c4py00976b

    20. [20]

      Park, J. H.; Jeon, J. Y.; Lee, J. J.; Jang, Y.; Varghese, J. K.; Lee, B. Y. Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 2013, 46(9), 3301−3308  doi: 10.1021/ma400360w

    21. [21]

      Li, Q.; Zhu, W. X.; Li, C. C.; Guan, G. H.; Zhang, D.; Xiao, Y. N.; Zheng, L. C. A non-phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: synthesis, characterization, and properties. J. Polym. Sci., Part A: Polym. Chem. 2013, 51(6), 1387−1397  doi: 10.1002/pola.26507

    22. [22]

      Eo, Y. S.; Rhee, H. W.; Shin, S. H. Catalyst screening for the melt polymerization of isosorbide-based polycarbonate. J. Ind. Eng. Chem. 2016, 37, 42−46  doi: 10.1016/j.jiec.2016.03.007

    23. [23]

      Sun, W.; Xu, F.; Cheng, W. G.; Sun, J.; Ning, G. Q.; Zhang, S. J. Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids. Chin. J. Catal. 2017, 38(5), 908−917  doi: 10.1016/S1872-2067(17)62822-5

    24. [24]

      Chrysanthos, M.; Galy, J.; Pascault, J. P. Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether. Polymer 2011, 52, 3611−3620  doi: 10.1016/j.polymer.2011.06.001

    25. [25]

      Hu, F. S.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. Synthesis and characterization of thermosetting furan-based epoxy systems. Macromolecules 2014, 47(10), 3332−3342  doi: 10.1021/ma500687t

    26. [26]

      Li, C.; Dai, J. Y.; Liu, X. Q.; Jiang, Y. H.; Ma, S. Q.; Zhu, J. Green Synthesis of a bio-based epoxy curing agent from isosorbide in aqueous condition and shape memory properties investigation of the cured resin. Macromol. Chem. Phys. 2016, 217(13), 1439−1447  doi: 10.1002/macp.v217.13

    27. [27]

      Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279(5350), 548−552  doi: 10.1126/science.279.5350.548

    28. [28]

      Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120(24), 6024−6036  doi: 10.1021/ja974025i

    29. [29]

      Chen, S. Y.; Huang, C. Y.; Yokoi, T.; Tang, C. Y.; Huang, S. J.; Lee, J. J.; Chan, J. C. C.; Tatsumi, T.; Cheng, S. Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings. J. Mater. Chem. 2012, 22(5), 2233−2243  doi: 10.1039/C2JM14393C

    30. [30]

      Liu, X. Y.; Sun, L. B.; Lu, F.; Liu, X. D.; Liu, X. Q. Low-temperature generation of strong basicity via an unprecedented guest-host redox interaction. Chem. Commun. 2013, 49(73), 8087−8089  doi: 10.1039/c3cc44721a

    31. [31]

      Albuquerque, M. C. G.; Jiménez-Urbistondo, I.; Santamaría-González, J.; Mérida-Robles, J. M.; Moreno-Tost, R.; Rodríguez-Castellón, E.; Jiménez-López, A.; Azevedo, D. C. S.; Cavalcante, C. L.; Maireles-Torres, P. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl. Catal. A-Gen. 2008, 334(1-2), 35−43  doi: 10.1016/j.apcata.2007.09.028

    32. [32]

      Sun, L. B.; Kou, J. H.; Chun, Y.; Yang, J.; Gu, F. N.; Wang, Y.; Zhu, J. H.; Zou, Z. G. New attempt at directly generating superbasicity on mesoporous silica SBA-15. Inorg. Chem. 2008, 47(10), 4199−4208  doi: 10.1021/ic702223b

    33. [33]

      Arumugam, A.; Ponnusami, V. Optimization of recovery of silica from sugarcane leaf ash and Ca/SBA-15 solid base for transesterification of Calophyllum inophyllum oil. J. Sol-Gel. Sci. Technol. 2015, 74(1), 132−142  doi: 10.1007/s10971-014-3586-z

    34. [34]

      Tantirungrotechai, J.; Thananupappaisal, P.; Yoosuk, B.; Viriya-empikul, N.; Faungnawakij, K. One-pot synthesis of calcium-incorporated MCM-41 as a solid base catalyst for transesterification of palm olefin. Catal. Commun. 2011, 16(1), 25−29  doi: 10.1016/j.catcom.2011.09.002

    35. [35]

      Sun, H.; Han, J. X.; Ding, Y. Q.; Li, W.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol. Appl. Catal. A-Gen. 2010, 390(1-2), 26−34  doi: 10.1016/j.apcata.2010.09.030

    36. [36]

      Nair, P. A.; Ramesh, P. Synthesis and characterization of poly(urethane-ether)s from calcium salt of p-hydroxybenzoic acid. J. Appl. Polym. Sci. 2011, 122(3), 1946−1952  doi: 10.1002/app.33906

    37. [37]

      Wang, Z. Q.; Yang, X. G.; Li, J. G.; Liu, S. Y.; Wang, G. Y. Synthesis of high-molecular-weight aliphatic polycarbonates from diphenyl carbonate and aliphatic diols by solid base. J. Mol. Catal. A-Chem. 2016, 424, 77−84  doi: 10.1016/j.molcata.2016.08.017

    38. [38]

      Zhu, W. X.; Huang, X.; Li, C. C.; Xiao, Y. N.; Zhang, D.; Guan, G. H. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polym. Int. 2011, 60(7), 1060−1067  doi: 10.1002/pi.v60.7

    39. [39]

      Liu, F.; Yang, X. G.; Li, J. G.; Liu, S. Y.; Yao, J.; Chen, T.; Wang, G. Y. Synthesis of poly (butylene carbonate) by melt transesterification of diphenyl carbonate and 1,4-butanediol. Acta Polymerica Sinica (in Chinese) 2014, (5), 628−635  doi: 10.3724/SP.J.1105.2014.13335

    40. [40]

      Naik, P. U.; Refes, K.; Sadaka, F.; Brachais, C. H.; Boni, G.; Couvercelle, J. P.; Picquet, M.; Plasseraud, L. Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions. Polym. Chem. 2012, 3(6), 1475−1480  doi: 10.1039/c2py20056b

    41. [41]

      Wang, Z. Q.; Bai, Y. S.; Jiang, W.; Yang, X. G.; Liu, S. Y.; Wang, G. Y. Structure-activity correlations of calcined Mg-Al hydrocalcites for aliphatic polycarbonate synthesis via transesterification process. Chinese J. Polym. Sci. 2017, 35(1), 130−140  doi: 10.1007/s10118-017-1887-8

    42. [42]

      Wang, Z. Q.; Yang, X. G.; Li, S. Y.; Hu, J.; Zhang, H.; Wang, G. Y. One-pot synthesis of high-molecular-weight aliphatic polycarbonates via melt transesterification of diphenyl carbonate and diols using Zn(OAc)2 as a catalyst. RSC Adv. 2015, 5(106), 87311−89319  doi: 10.1039/C5RA18275A

    43. [43]

      Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359(6397), 710−712  doi: 10.1038/359710a0

    44. [44]

      Radwan, N. R. E. Influence of La2O3 and ZrO2 as promoters on surface and catalytic properties of CuO/MgO system prepared by sol-gel method. Appl. Catal. A-Gen. 2006, 299(17), 103−121  doi: 10.1016/j.apcata.2005.10.008

    45. [45]

      Tian, B. Z.; Liu, X. Y.; Yu, C. Z.; Gao, F.; Luo, Q; Xie, S. H.; Tu, B.; Zhao, D. Y. Microwave assisted template removal of siliceous porous materials. Chem. Commun. 2002, 11, 1186−1187  doi: 10.1039/b202180c

    46. [46]

      Jiang, Q.; Wu, Z. Y.; Wang, Y. M.; Cao, Y.; Zhou, C. F.; Zhu, J. H. Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem. 2006, 16(16), 1536−1542  doi: 10.1039/b516061h

    47. [47]

      Di Cosimo, J. I.; Díez, V. K.; Xu, M.; Iglesia, E.; Apesteguía, C. R. Structure and surface and catalytic properties of Mg-Al basic oxide. J. Catal. 1998, 178(2), 499−510  doi: 10.1006/jcat.1998.2161

    48. [48]

      Zheng, L. P.; Xia, S. X.; Hou, Z. T.; Zhang, M. Y.; Hou, Z. Y. Transesterification of glycerol with dimethyl carbonate over Mg-Al hydrotalcites. Chin. J. Catal. 2014, 35(3), 310−318  doi: 10.1016/S1872-2067(12)60738-4

    49. [49]

      Hájek, M.; Kutálek, P.; Smolákováet, L.; Troppová, I.; Čapek, L.; Kubička, D.; Kocík, J.; Thanh, D. N. Transesterification of rapeseed oil by Mg-Al mixed oxides with various Mg/Al molar ratio. Chem. Eng. J. 2015, 263, 160−167  doi: 10.1016/j.cej.2014.11.006

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    3. [3]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    4. [4]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    5. [5]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    6. [6]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    7. [7]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    8. [8]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    14. [14]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    15. [15]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    16. [16]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(636)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return