Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids
- Corresponding author: Silvana Alfei, alfei@difar.unige.it
Citation: Silvana Alfei, Gaby Brice Taptue, Silvia Catena, Angela Bisio. Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 999-1010. doi: 10.1007/s10118-018-2124-9
Hourani, R.; Kakkar, A. Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun. 2010, 31, 947−974
doi: 10.1002/marc.200900712
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem. 2014, 38, 2168−2203
doi: 10.1039/c3nj01239e
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioall. Sci. 2014, 6, 139−150
doi: 10.4103/0975-7406.130965
Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137, 362−368
doi: 10.1021/ja5105848
Li, X.; Qian, Y.; Liu, T.; Hu, X.; Zhang, G.; You, Y.; Liu, S. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 2011, 32, 6595−605
doi: 10.1016/j.biomaterials.2011.05.049.
Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22, 989−997
doi: 10.1021/la0522707
Luo, S. Z.; Xu, J.; Zhu, Z. Y.; Wu, C.; Liu, S. Y. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Physic. Chem. 2006, 110, 9132−9139
doi: 10.1021/jp061055b
Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W.; Liu, S. Y. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution. Chem. Mater. 2007, 19, 2489−2494
doi: 10.1021/cm070088g
Luo, S.; Hu, X.; Ling, C.; Liu, X.; Chen, S.; Han, M. Multiarm star-like unimolecular micelles with a dendritic core and a dual thermosensitive shell. Polym. Int. 2011, 60, 717−724
doi: 10.1002/pi.2989
Kesharwani, P.; Jain, K.; Jain, N. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268−307
doi: 10.1016/j.progpolymsci.2013.07.005
Datija, J.; Sai, V. V. R.; Mukherji, S. Dendrimers in biosensors: concept and applications. J. Mater. Chem. 2011, 21, 14367−14386
doi: 10.1039/c1jm10527b
Caminade, A M. in " Dendrimers: towards catalytic, material and biomedical uses, Chapter 15”, ed. By Caminade, A. M.; Turrin, C. O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. John Wiley & Sons, Chichester, UK., 2011, p. 375–392.
Kim, J. H.; Park, K.; Nam, H. Y., Lee, S.; Kim, K.; Kwon, I. C. Polymers for bioimaging. Prog. Polym. Sci. 2007, 32, 1031-1053.
Wang, Z.; Niu, G.; Chen, X. Polymeric materials for theranostic applications. Pharm. Res. 2014, 31, 1358−1376
doi: 10.1007/s11095-013-1103-7
Dufès, C.; Uchegbu, I. F.; Schätzlein, A. G. Dendrimers in gene delivery. Adv. Drug Deliver. Rev. 2005, 57, 2177−2202
doi: 10.1016/j.addr.2005.09.017
Eliyahu, H.; Barenholz, Y.; Domb, A. J. Polymers for DNA delivery. Molecules 2005, 10, 34−64
doi: 10.3390/10010034
Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581−593
doi: 10.1038/nrd1775
Schaffert, D.; Wagner, E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 2008, 15, 1131−1138
doi: 10.1038/gt.2008.105
Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259−302
doi: 10.1021/cr800409e
O’Rorke, S.; Keeney, M.; Pandit, A. Non-viral polyplexes: scaffold mediated delivery for gene therapy. Prog. Polym. Sci. 2010, 35, 441−458
doi: 10.1016/j.progpolymsci.2010.01.005
Marvaniya, H. M.; Parikh, P. K.; Patel, V. R.; Modi, K. N.; Sen, D. J. Dendrimer nanocarriers as versatile vectors in gene delivery. J. Chem. Pharm. Res. 2010, 2, 97−108
Guo, X.; Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 2012, 45, 971−979
doi: 10.1021/ar200151m
Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1, 152−170
doi: 10.1039/C2BM00030J
Biswas, S.; Torchilin, V. P. Dendrimers for siRNA delivery. Pharmaceuticals 2013, 6, 161−183
doi: 10.3390/ph6020161
Pourianazar, N. T.; Mutulu, P.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanopart. Res. 2014, 16, 2342/1−2342/38
Newkome, G. R.; Shreiner, C. D. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49, 1−173
doi: 10.1016/j.polymer.2007.10.021
Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker Jr, J. R. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Sci. Technol. Today 2000, 3, 232−245
doi: 10.1016/S1461-5347(00)00273-X
Zong, H.; Shah, D.; Selwa, K.; Tsuchida, R. E.; Rattan, R.; Mohan, J.; Stein, A. B.; Otis, J. B.; Goonewardena, S. N. Design and evaluation of tumor-specific dendrimer epigenetic therapeutics chemistryopen. Chem. Open 2015, 4, 335−341
Han, L.; Huang, R.; Liu, S.; Huang, S.; Jiang, C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol. Pharm. 2010, 7, 2156−2165
doi: 10.1021/mp100185f
Gao, Y.; Li, Z.; Xie, X.; Wang, C.; You, J.; Mo, F.; Jin, B.; Chen, J.; Shao, J.; Chen, H.; Jia, L. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. Eur. J. Pharm. Sci. 2015, 70, 55−63
doi: 10.1016/j.ejps.2015.01.007
Zhang, Y.; Thomas, T. P.; Lee, K. H.; Li, M.; Zong, H.; Desai, A. M.; Kotlyar, A.; Huang, B.; Banaszak H. M. M.; Baker, J. R. Jr. Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent. Bioorg. Med. Chem. 2011, 19, 2557−2564
doi: 10.1016/j.bmc.2011.03.019
Mekuria, S. L.; Debele, T. A.; Chou, H Y.; Tsai, H C. IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa cells. J. Phys. Chem. B 2016, 120, 123−130
doi: 10.1021/acs.jpcb.5b11125
Kolhatkar, R. B.; Kitchens, K. M.; Swaan, P. W.; Ghandehari, H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconj. Chem. 2007, 18, 2054−2060
doi: 10.1021/bc0603889
Waite, C. L.; Sparks, S. M.; Uhrich, K. E.; Roth, C. M. Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol. 2009, 9, 9−38
doi: 10.1186/1472-6750-9-9
Liu, J. F.; Liu, J. J.; Chu, L. P.; Tong, L. L.; Gao, H. J.; Yang, C. H.; Wang, D. Z.; Shi, L. Q.; Kung, D. L.; Li, Z. J. Synthesis, biodistribution, and imaging of PEGylated-acetylated polyamidoamine dendrimers. J. Nanosci. Nanotechnol. 2014, 14, 3305−3312
doi: 10.1166/jnn.2014.7995
Ciolkowski, M.; Petersen, J. F.; Ficker, M.; Janaszewska, A.; Christensen, J. B.; Klajnert, B.; Bryszewska, M. Surface modifi-cation of PAMAM dendrimer improves its biocompatibility. Nanomed. Nanotechnol. 2012, 8, 815−817
doi: 10.1016/j.nano.2012.03.009
Ghilardi, A.; Pezzoli, D.; Bellucci, M. C.; Malloggi, C.; Negri, A.; Sgnappa, A.; Tedeschi, G.; Candiani, G.; Volonterio, A. Synthesis of multifunctional PAMAM-aminoglycoside conjugates with enhanced transfection efficiency. Bioconj. Chem. 2013, 24, 1928−1963
doi: 10.1021/bc4003635
Arima, H.; Motoyama, K.; Higashi, T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv. Drug Deliver. Rev. 2013, 65, 1204−1214
doi: 10.1016/j.addr.2013.04.001
Navath, R. S. Menjoge, A. R.; Wang, B.; Romero, R.; Kannan, S.; Kannan, R. M. Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications. Biomacromolecules 2010, 11, 1544−1536
doi: 10.1021/bm100186b
Park, J. H.; Park, J. S.; Choi, J. S. Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromol. Res. 2014, 22, 500−508
doi: 10.1007/s13233-014-2073-2
Wang, F.; Wang, Y.; Wang, H.; Shao, N.; Chen, Y.; Cheng, Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014, 35, 9187−9198
doi: 10.1016/j.biomaterials.2014.07.027
Lam, S. J.; Sulistio, A.; Ladewig, K.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G. Peptide-based star polymers as potential siRNA carriers. Austr. J. Chem. 2014, 67, 592−597
doi: 10.1071/CH13525
Nam, H. Y.; Nam, K.; Hahn, H. J.; Kim, B. H.; Lim, H. J.; Kim, H. J.; Choi, J. S.; Park, J. S. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 2009, 30, 665−673
doi: 10.1016/j.biomaterials.2008.10.013
Liu, M.; Chen, J.; Xue, Y. N.; Liu, W. M.; Zhuo, R. X.; Huang, S. W. Poly(beta-aminoester)s with pendant primary amines for efficient gene delivery. Bioconj. Chem 2009, 20, 2317−2323
doi: 10.1021/bc900317m
Eltoukhy, Q. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials 2012, 33, 3594−3603
doi: 10.1016/j.biomaterials.2012.01.046
Bishop, C. J.; Ketola, T M.; Tzeng, S. Y.; Sunshine, J. C.; Urttio, A.; Lemmetyinen, H., Vuorimaa-Laukkanen, E., Yliperttula, M.; Green, J. J. The effect and role of carbon atoms in poly(beta-amino ester)s for DNA Binding and Gene Delivery. J. Am. Chem. Soc. 2013, 135, 6951−6957
doi: 10.1021/ja4002376
Chang, K. L.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J. Control. Release 2011, 156, 195−202
doi: 10.1016/j.jconrel.2011.07.021
Wen, Y.; Guo, Z.; Du, Z.; Fang, R.; Wu, H.; Zeng, X.; Wang, C.; Feng, M.; Pan, S. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials 2012, 33, 8111−8121
doi: 10.1016/j.biomaterials.2012.07.032
Wang, F.; Wang, Y.; Wang, H.; Shao, N.; Chen, Y.; Cheng, Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014, 35, 9187−9198
doi: 10.1016/j.biomaterials.2014.07.027
Liu, X.; Liu, C.; Zhou, J.; Chen, C.; Qu, F.; Rossi, J. J.; Rocchi, P.; Peng, L. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 2015, 7, 3867−3875
doi: 10.1039/C4NR04759A
Kim, J. B.; Choi, J. S.; Nam, K.; Lee, M.; Park, J. S.; Lee, J. K. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control. Release 2006, 114, 110−117
doi: 10.1016/j.jconrel.2006.05.011
Kim, T.; Bai, C. Z.; Nam, K.; Park, J. Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. J. Control. Release 2009, 136, 132−139
doi: 10.1016/j.jconrel.2009.01.028
Liu, J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol 1995, 49, 57−68
doi: 10.1016/0378-8741(95)90032-2
Andersson, D.; Cheng, Y.; Duan, R. D. Ursolic acid inhibits the formation of aberrant crypt foci and affects colonic sphingomyelin hydrolyzing enzymes in azoxymethane-treated rats. J. Cancer Res. Clin. Oncol 2008, 134, 101−107
Furtado, R. A.; Rodrigues, É. P.; Araujo, F. R. R.; Oliveira, W. L.; Furtado, M. A.; Castro, M. B.; Cunha, W. R.; Tavares, D. C. Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1,2-dimethylhydrazine in rat colon. Toxicol. Pathol. 2008, 36, 576−580
doi: 10.1177/0192623308317423
Gao, J. Hepatoprotective activity of terminalia catappa l. leaves and its two triterpenoids. J. Pharm. Pharmacol. 2004, 56, 1449−1455
doi: 10.1211/0022357044733
Liu, J. The Effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam. Appl. Toxicol. 1994, 22, 34−40
doi: 10.1006/faat.1994.1005
Martin-Aragón, S.; de Las Heras, B.; Sanchez-Reus, M. I.; Benedi, J. Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Exp. Toxicol. Pathol. 2001, 53, 199−206
doi: 10.1078/0940-2993-00185
Saravanan, R.; Viswanathan, P.; Pugalendi, K. V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 2006, 78, 713−718
doi: 10.1016/j.lfs.2005.05.060
Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10, 115−121
doi: 10.1078/094471103321659807
Ovesná, Z.; Kozics, K.; Slamenovˇ, D. Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutation Res 2006, 600, 131−137
doi: 10.1016/j.mrfmmm.2006.03.008
Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B. B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003, 63, 4375−83
Moon H. K.; Yang, E. S.; Park, J. W. Protection of per-oxynitrite-induced DNA damage by dietary antioxidant. Arch. Pharm. Res. 2006, 29, 213−217
doi: 10.1007/BF02969396
Lee, I.; Lee, J.; Lee, Y. H.; Leonard, J. Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial fluid pressure. Anticancer Res. 2001, 21, 2827−2833
Yim, E. K.; Lee, M. J.; Lee, K. H., Um, S. J.; Park, J. S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. Int. J. Gynecol. Cancer. 2006, 16, 2023−2031
doi: 10.1111/ijg.2006.16.issue-6
Huang, M. T.; Ho, C. T.; Wang, Z. Y.; Ferraro, T.; Lou, Y. R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J. D.; Conney, A. K. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer. Res. 1994, 54, 701−708
Tokuda, H.; Ohigashi, H.; Koshimizu, K.; Ito, Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 1986, 33, 279−285
doi: 10.1016/0304-3835(86)90067-4
Kim, K. A.; Lee, J. S.; Park, H. J.; Kim, J. W.; Kim, C. J.; Shim, I. S.; Kim, N. J.; Han, S. M.; Lim, S. Inhibition of cytochrome P450 activities by oleano-lic acid and ursolic acid in human liver microsomes. Life Sci. 2004, 74, 2769−2779
doi: 10.1016/j.lfs.2003.10.020
Ramos, A. A.; Lima, C. F.; Pereira, M. L.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: evaluation by the comet assay. Toxicol. Lett. 2008, 177, 66−73
doi: 10.1016/j.toxlet.2008.01.001
Chiang, L. C.; Chiang, W.; Chang, M. Y.; Ng, L. T.; Lin, C. C. Antileukemic activity of selected natural products in Taiwan. Am. J. Chin. Med. 2003, 31, 37−46
doi: 10.1142/S0192415X03000825
Fan, Y. M.; Xu, L. Z.; Gao, J.; Wang, Y.; Tang, X. H. Zhao, X. N.; Zhang, Z. X. Phytochemical and antiinflammatory studies on Terminalia catappa. Fitoterapia 2004, 75, 253−260
doi: 10.1016/j.fitote.2003.11.007
Peng, Q.; Zhu, J.; Yu, Y.; Hoffman, L.; Yang, X. Hyperbranched lysine-arginine copolymer for gene delivery. J. Biomater. Sci. Polym. Ed. 2015, 26, 1163−1177
doi: 10.1080/09205063.2015.1080482
Resende, F. A.; Mattos de Andrade Barcala, C. A.; da Silva Faria, M. C.; Kato, F. H.; Cunha, W. R.; Tavares, D. C. Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci. 2006, 79, 1268−1273
doi: 10.1016/j.lfs.2006.03.038
Lu, J.; Zheng, Y. L.; Wu, D. M.; Luo, L.; Sun, D. X.; Shan, Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem. Pharmacol. 2007, 74, 1078−1090
doi: 10.1016/j.bcp.2007.07.007
Saravanan, R. Pugalendi, V. Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacol. Rep. 2006, 58, 41−47
Wang, Y.; He, Z.; Deng, S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des., Devel. Ther. 2016, 10, 1663−1674
Senthil, S.; Chandramohan, G.; Pugalendi, K. V. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenol-induced myocardial ischemia in rats. Int. J. Cardiol. 2007, 119, 131−133
doi: 10.1016/j.ijcard.2006.07.108
Radhiga, T.; Rajamanickam, C.; Senthil, S.; Pugalendi, K. V. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. Food Chem. Toxicol. 2012, 50, 3971−3977
doi: 10.1016/j.fct.2012.07.067
Aguirre-Crespo, F.; Vergara-Galicia, J.; Villalobos-Molina, R.; López-Guerrero, J. J.; Navarrete-Vázquez, G.; Estrada-Soto, S. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta. Life Sci. 2006, 79, 1062−1068
doi: 10.1016/j.lfs.2006.03.006
Martınez-Gonzalez, J.; Rodrıguez-Rodrıguez, R.; Gonzalez-Dıez, M.; Rodrıguez, C.; Herrera, M. D.; Ruiz-Gutierrez, V.; Badimon, L. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J. Nutr. 2008, 138, 443−448
doi: 10.1093/jn/138.3.443
Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10, 115−121
doi: 10.1078/094471103321659807
Somova, L. I.; Shode, F. O.; Mipando, M. Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. Phytomedicine 2004, 11, 121−129
doi: 10.1078/0944-7113-00329
Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. Mol. Nutr. Food Res. 2008, 52, 26−42
doi: 10.1002/(ISSN)1613-4133
Messner, B. Ursolic acid causes DNA damage, p53-mediated, mitochondria-and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. Atherosclerosis 2011, 219, 402−408
doi: 10.1016/j.atherosclerosis.2011.05.025
Liu, Y.; Oh, S. J.; Chang, K. H.; Kim, Y. G.; Lee, M. Y. Antiplatelet effect of AMP-activated protein kinase activator and its potentiation by the phosphodiesterase inhibitor dipyridamole. Biochem. Pharmacol. 2013, 86, 914−925
doi: 10.1016/j.bcp.2013.07.009
Kim, M.; Han, C. H.; Lee, M. Y. Enhancement of platelet aggregation by ursolic acid and oleanolic acid. Biomol. Ther 2014, 22, 254−259
doi: 10.4062/biomolther.2014.008
Liu, J. Oleanolic acid and ursolic acid: research perspectives. J. Ethnopharmacol. 2005, 100, 92−94
doi: 10.1016/j.jep.2005.05.024
Nahak, P.; Karmakar, G.; Chettri, P.; Roy, B.; Guha, P.; Besra, S. E.; Soren, A.; Bykov, A. G.; Akentiev, A. V.; Noskov, B. A.; Panda, A. K. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. Langmuir 2016, 32, 9816−9825
doi: 10.1021/acs.langmuir.6b02402
Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol. Res. 2017, 25(12), 1172−1186
doi: 10.1007/s13233-017-5160-3
Bisio, A.; Romussi, G.; Russo, E.; Cafaggi, S.; Schito, A. M.; Repetto, B.; De Tommasi, N. Antimicrobial activity of the ornamental species salvia corrugata, a potential new crop for extractive purposes. J. Agric. Food Chem. 2008, 56, 10468−10472
doi: 10.1021/jf802200x
Von Seel, F. in " Grundlagen der analytischen Chemie, Vol. 82”, ed. By Geier, G., Verlag Chemie, Weinheim, 1970, p. 962.
Aravindan, L.; Bicknell, K. A.; Brooks, G.; Khutoryanskiya, V. V.; Williams, A. C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm. 2009, 378, 201−210
doi: 10.1016/j.ijpharm.2009.05.052
Benns, J. M.; Choi, J. S.; Mahato, R. I.; Park, J. S.; Kim, S. W. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconj. Chem. 2000, 11, 637−645
doi: 10.1021/bc0000177
Fernandez, L. Solubilization and release properties of dendrimers evaluation as prospective drug delivery systems. J. Supramol. Chem. 2006, 18, 633−643
doi: 10.1080/10610270601012776
Santo, M.; Fox, M. A. Hydrogen bonding interactions between Starburst dendrimers and several molecules of biological interest. Phys. Org. Chem. 1999, 12, 293−307
doi: 10.1002/(ISSN)1099-1395
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 2008, 97, 123−143
doi: 10.1002/jps.21079
Milhem, O. M.; Myles, C.; McKeown, N. B.; Attwood, D.; D’Emanuele, A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm. 2000, 197, 239−241
doi: 10.1016/S0378-5173(99)00463-9
Kolhe, P.; Misra, E.; Kannan, R. M.; Kannan, S.; Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm. 2003, 259, 143−160
doi: 10.1016/S0378-5173(03)00225-4
Twyman, L. J.; Beezer, A. E.; Esfand, R.; Hardy, M. J.; Mitchell, J. C. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett. 1999, 40, 1743−1746
doi: 10.1016/S0040-4039(98)02680-X
Alfei, S.; Castellaro, S.; Taptue, G. B. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org. Commun. 2017, 10, 144−177
doi: 10.25135/acg.oc.
Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Spectral assignments and reference data. Magn. Reson. Chem. 2003, 41, 636−638
doi: 10.1002/(ISSN)1097-458X
Eichman, J. D.; Bielinska, A. S. U.; Kukowska-Latallo, J. F.; Baker J. R. Jr. The use of PA-MAM dendrimers in the efficient transfer of genetic material into cells. Sci. Technol. Today 2000, 3, 232−245
doi: 10.1016/S1461-5347(00)00273-X
Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195−7206
doi: 10.1021/acsnano.5b02017
Yu, H.; Cui, Z.; Yu, P.; Guo, C.; Feng, B.; Jiang, T.; Wang, S.; Yin, Q.; Zhong, D.; Yang, X.; Zhang, Z.; Li, Y. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv. Funct. Mater. 2015, 25, 2489−2500
doi: 10.1002/adfm.201404484
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
Ting Li , Xinxin Zheng , Lejing Qu , Yuanyuan Ou , Sai Qiao , Xue Zhao , Yajun Zhang , Xinfeng Zhao , Qian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262