Citation: Tian Xia, Ya-Ping Qin, Ting Huang. Phase Separation, Wetting and Dewetting in PS/PVME Blend Thin Films: Dependence on Film Thickness and Composition Ratio[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1084-1092. doi: 10.1007/s10118-018-2121-z shu

Phase Separation, Wetting and Dewetting in PS/PVME Blend Thin Films: Dependence on Film Thickness and Composition Ratio

  • Corresponding author: Tian Xia, xiatian@cqut.edu.cn
  • Received Date: 26 December 2017
    Accepted Date: 3 February 2018
    Available Online: 21 March 2018

  • The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.
  • 加载中
    1. [1]

      Reiter, G. Dewetting as a probe of polymer mobility in thin films. Macromolecules 1994, 27(11), 3046−3052  doi: 10.1021/ma00089a023

    2. [2]

      Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344−1351  doi: 10.1021/la00029a031

    3. [3]

      Radoev, B. P.; Scheludko, A. D.; Manev, E. D. Critical thickness of thin liquid films: theory and experiment. J. Colloid Interface Sci. 1983, 95(1), 254−265  doi: 10.1016/0021-9797(83)90094-2

    4. [4]

      Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75−78  doi: 10.1103/PhysRevLett.68.75

    5. [5]

      Morariu, M. D., "Pattern formation by capillary instabilities in thin films", University Library Groningen. 2004.

    6. [6]

      Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966, 42, 23−33

    7. [7]

      Xie, R.; Karim, A.; Douglas, J.; Han, C.; Weiss, R. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251−1254  doi: 10.1103/PhysRevLett.81.1251

    8. [8]

      Sferrazza, M.; Heppenstall-Butler, M.; Cubitt, R.; Bucknall, D.; Webster, J.; Jones, R. Interfacial instability driven by dispersive forces: the early stages of spinodal dewetting of a thin polymer film on a polymer substrate. Phys. Rev. Lett. 1998, 81(23), 5173−5176  doi: 10.1103/PhysRevLett.81.5173

    9. [9]

      Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36(2), 269−293  doi: 10.1016/j.progpolymsci.2010.07.004

    10. [10]

      Mitlin, V. S. Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 1993, 156(2), 491−497  doi: 10.1006/jcis.1993.1142

    11. [11]

      Mitlin, V. S. On dewetting conditions. Colloids Surf. Physicochem. Eng. Aspects 1994, 89(2-3), 97−101  doi: 10.1016/0927-7757(94)80109-6

    12. [12]

      Liu, Y.; Rafailovich, M.; Sokolov, J.; Schwarz, S.; Zhong, X.; Eisenberg, A.; Kramer, E.; Sauer, B.; Satija, S. Wetting behavior of homopolymer films on chemically similar block copolymer surfaces. Phys. Rev. Lett. 1994, 73(3), 440  doi: 10.1103/PhysRevLett.73.440

    13. [13]

      Wensink, K.; Jérôme, B. Dewetting induced by density fluctuations. Langmuir 2002, 18(2), 413−416  doi: 10.1021/la015611z

    14. [14]

      Yerushalmi-Rozen, R.; Kerle, T.; Klein, J. Alternative dewetting pathways of thin liquid films. Science 1999, 285(5431), 1254−1256  doi: 10.1126/science.285.5431.1254

    15. [15]

      Geoghegan, M.; Krausch, G. Wetting at polymer surfaces and interfaces. Prog. Polym. Sci. 2003, 28(2), 261−302  doi: 10.1016/S0079-6700(02)00080-1

    16. [16]

      Xia, T.; Qin, Y.; Huang, Y.; Huang, T.; Xu, J.; Li, Y. Sequence control of phase separation and dewetting in PS/PVME blend thin films by changing molecular weight of PS. J. Chem. Phys. 2016, 145(20), 204903  doi: 10.1063/1.4968556

    17. [17]

      Ogawa, H.; Kanaya, T.; Nishida, K.; Matsuba, G. Phase separation and dewetting in polystyrene/poly (vinyl methyl ether) blend thin films in a wide thickness range. Polymer 2008, 49(1), 254−262  doi: 10.1016/j.polymer.2007.11.031

    18. [18]

      El-Mabrouk, K.; Belaiche, M.; Bousmina, M. Phase separation in PS/PVME thin and thick films. J. Colloid Interface Sci. 2007, 306(2), 354−367  doi: 10.1016/j.jcis.2006.10.051

    19. [19]

      You, J.; Liao, Y.; Men, Y.; Shi, T.; An, L.; Li, X. Composition effect on interplay between phase separation and dewetting in PMMA/SAN blend ultrathin films. Macromolecules 2011, 44(13), 5318−5325  doi: 10.1021/ma200082m

    20. [20]

      You, J.; Hu, S.; Liao, Y.; Song, K.; Men, Y.; Shi, T.; An, L. Composition effect on dewetting of ultrathin films of miscible polymer blend. Polymer 2009, 50(19), 4745−4752  doi: 10.1016/j.polymer.2009.08.002

    21. [21]

      Ermi, B. D.; Karim, A.; Douglas, J. F. Formation and dissolution of phase-separated structures in ultrathin blend films. J. Polym. Sci., Part B: Polym. Phys. 1998, 36(1), 191−200  doi: 10.1002/(ISSN)1099-0488

    22. [22]

      Sauer, B. B.; Walsh, D. J. Use of neutron reflection and spectroscopic ellipsometry for the study of the interface between miscible polymer films. Macromolecules 1991, 24(22), 5948−5955  doi: 10.1021/ma00022a009

    23. [23]

      Azzam, R. M. A.; Bashara, N. M.; Ballard, S. S. Ellipsometry and polarized light. Phys. Today 1978, 31(11), 72−72

    24. [24]

      Xia, T.; Ogawa, H.; Inoue, R.; Nishida, K.; Yamada, N. L.; Li, G.; Kanaya, T. Dewetting process of deuterated polystyrene and poly(vinyl methyl ether) blend thin films via phase separation. Macromolecules 2013, 46(11), 4540−4547  doi: 10.1021/ma400506f

    25. [25]

      Tanaka, K.; Yoon, J. S.; Takahara, A.; Kajiyama, T. Ultrathinning-induced surface phase separation of polystyrene/poly(vinyl methyl ether) blend film. Macromolecules 1995, 28(4), 934−938  doi: 10.1021/ma00108a021

    26. [26]

      Polios, I.; Soliman, M.; Lee, C.; Gido, S.; Schmidt-Rohr, K.; Winter, H. Late stages of phase separation in a binary polymer blend studied by rheology, optical and electron microscopy, and solid state NMR. Macromolecules 1997, 30(15), 4470−4480  doi: 10.1021/ma9701292

    27. [27]

      Zhang, S.; Shi, T.; You, J.; Li, Y. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend films: composition dependence. Polym. Chem. 2013, 4(14), 3943−3948  doi: 10.1039/c3py00290j

    28. [28]

      Zhang, S.; Zhu, Y.; Shi, T.; Zhao, H.; You, J.; Li, Y. Selective solvent annealing induced phase separation and dewetting in PMMA/SAN blend ultrathin films. J. Polym. Sci., Part B: Polym. Phys. 2014, 52(19), 1243−1251  doi: 10.1002/polb.v52.19

    29. [29]

      Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 2001, 86(24), 5534−5537  doi: 10.1103/PhysRevLett.86.5534

    30. [30]

      You, J.; Zhang, S.; Huang, G.; Shi, T.; Li, Y. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend film: film thickness and solvent dependence. J. Chem. Phys. 2013, 138(24), 244907  doi: 10.1063/1.4811471

  • 加载中
    1. [1]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    2. [2]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    3. [3]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    4. [4]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    5. [5]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    8. [8]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    9. [9]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    10. [10]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    11. [11]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    12. [12]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    13. [13]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    14. [14]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    15. [15]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    16. [16]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    17. [17]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    18. [18]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    19. [19]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    20. [20]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

Metrics
  • PDF Downloads(0)
  • Abstract views(751)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return