Citation: Gabriela Jandíková, Petra Stoplova, Antonio Di Martino, Petr Stloukal, Pavel Kucharczyk, Michal Machovsky, Vladimir Sedlarik. Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 925-933. doi: 10.1007/s10118-018-2120-0 shu

Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof

  • Corresponding author: Pavel Kucharczyk, p.kucharczyk@seznam.cz
  • Received Date: 2 December 2017
    Revised Date: 19 January 2018
    Accepted Date: 3 February 2018
    Available Online: 20 April 2018

  • This work investigates the degradation and properties of a thermoplastically prepared composite comprising a polylactide/ hybrid zinc stearate-silver system. The influence of the zinc stearate-silver system on the properties of the composite is investigated by electron microscopy, differential scanning calorimetry and tensile tests. Furthermore, the antimicrobial activities of the systems are examined. The degradation behaviour of the composites is studied in both abiotic and biotic (composting) environments at an elevated temperature of 58 °C. The results reveal good dispersion of the additive in the PLA matrix, a stabilizing effect exerted by the same on the polylactide matrix during processing, and slight reduction in glass transition temperature. The zinc stearate-silver component also reduces brittleness and extends elongation of the composite. Abiotic hydrolysis is not significantly affected, which is in contrast with pure PLA, although mineralization during the early stage of biodegradation increases noticeably. The composite exhibits antimicrobial activity, even at the lowest dosage of the zinc stearate/silver component (1 wt%). Moreover, Ag and Zn contents were found to be present in the composite during abiotic hydrolysis, which was demonstrated by minimal diffusion of Ag ions from the matrix and very extensive washing of compounds that contained Zn.
  • 加载中
    1. [1]

      Izundia, E.; Larranaga, A.; Vilas, J. L.; Leon, L. M. Three-dimensional orientation of poly (L-lactide) crystals under uniaxial drawing. RSC Adv. 2016, 6(15), 11943−11951  doi: 10.1039/C5RA22680E

    2. [2]

      Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49(6), 1215−1233  doi: 10.1016/j.eurpolymj.2013.01.019

    3. [3]

      Jacobsen, S.; Fritz H. G. Plasticizing effect of different plasticizers on the mechanical properties of polylactide. Polym. Eng. Sci. 1999, 39(7), 1303−1310  doi: 10.1002/(ISSN)1548-2634

    4. [4]

      Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1(43), 13379−13398  doi: 10.1039/c3ta12555f

    5. [5]

      Martin, O.; Averous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42(14), 6209−6219  doi: 10.1016/S0032-3861(01)00086-6

    6. [6]

      Maglio, G.; Malinconico, M.; Migliozzi, A.; Groeninckx, G. Immiscible poly(L-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly (L-lactide)-poly (oxyethylene) block copolymer on thermal behavior and morphology. Macromol. Chem. Phys. 2004, 205(7), 946−950  doi: 10.1002/(ISSN)1521-3935

    7. [7]

      Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal properties of di- and triblock copolymers of poly(L-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer 2003, 44(2), 369−375  doi: 10.1016/S0032-3861(02)00764-4

    8. [8]

      Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Grazia Volpe, M. Compatibilized poly(ε-caprolactone)/poly(L-lactide) blends for biomedical uses. Macromol. Rapid Commun. 1999, 20(4), 236−238  doi: 10.1002/(ISSN)1521-3927

    9. [9]

      Galya, T.; Sedlarik, V.; Kuritka, I.; Sedlarikova, J.; Saha, P. Characterization of antibacterial polymeric films based on poly (vinyl alcohol) and zinc nitrate for biomedical applications. International Journal of Polymer Analysis and Characterization[online]. 2008, 13(4), 241−253  doi: 10.1080/10236660802175790

    10. [10]

      Iqbal, N.; Kadir, M. R. A.; Nik Malek, N. A. N.; Mahmood, N. H.; Murali, M. R.; Kamarul, T. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater. Lett. 2012, 89, 118−122  doi: 10.1016/j.matlet.2012.08.057

    11. [11]

      Bazant, P.; Munster, L.; Machovsky, M.; Sedlak, J.; Pastorek, M.; Kozakova, Z.; Kuritka, I. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Ind. Crops Prod. 2014, 62, 179−187  doi: 10.1016/j.indcrop.2014.08.028

    12. [12]

      Breitwieser, D.; Moghaddam, M. M.; Spirk, S.; Baghbanzadeh, M.; Pivec, T.; Fasl, H.; Ribitsch, V.; Kappe, C. O. In situ preparation of silver nanocomposites on cellulosic fibers-microwave vs conventional heating. Carbohydr. Polym. 2013, 94(1), 677−686  doi: 10.1016/j.carbpol.2013.01.077

    13. [13]

      Zhao, X.; Xia, Y.; Li, Q.; Ma, X.; Quan, F.; Geng, C.; Han, Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A: Physicochem. Eng. As. 2014, 144, 180−188

    14. [14]

      Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49(11), 3471−3482  doi: 10.1016/j.eurpolymj.2013.08.005

    15. [15]

      Kucharczyk, P.; Pavelková, A.; Stloukal, P.; Sedlarík, V. Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polym. Degrad. Stab. 2016, 129(1), 222−230  doi: 10.1016/j.polymdegradstab.2016.04.019

    16. [16]

      Stloukal, P.; Kucharczyk, P. Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive. Polym. Degrad. Stab. 2017, 142(1), 217−225  doi: 10.1016/j.polymdegradstab.2016.04.019

    17. [17]

      Lipik, V. T; Widjaja, L. K.; Liow, S. S.; Venkatraman, S. S. Effects of transesterification and degradation on properties and structure of polycaprolactone-polylactide copolymers. Polym. Degrad. Stab. 2010, 95, 2596−2602  doi: 10.1016/j.polymdegradstab.2010.07.027

    18. [18]

      Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 55−65  doi: 10.1016/j.jaap.2014.08.003

    19. [19]

      Salazar, R.; Domenek, S.; Plessis, C.; Ducruet, V. Quantitative determination of volatile organic compounds formed during polylactide processing by MHS-SPME. Polym. Degrad. Stab. 2017, 136, 80−88  doi: 10.1016/j.polymdegradstab.2016.12.010

    20. [20]

      Badia, J. D.; Santonja-Blasco, L.; Moriana, R.; Amparo, R. G. Thermal analysis applied to the characterization of degradation in soil of polylactide: II On the thermal stability and thermal decomposition kinetics. Polym. Degrad. Stab. 2010, 95(1), 2192−2199  doi: 10.1016/j.polymdegradstab.2010.06.002

    21. [21]

      Wang, M.; Xu, J.; Wu, H.; Guo, S. Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly(vinyl chloride). Polym. Degrad. Stab. 2006, 91(9), 2101−2109  doi: 10.1016/j.polymdegradstab.2006.01.011

    22. [22]

      Rosa, D. S.; Grillo, D.; Bardi, M. A. G.; Calil, M. R.; Guedes, C. G. F.; Ramires, E. C.; Frollini, E. Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym. Test. 2009, 28(8), 836−842  doi: 10.1016/j.polymertesting.2009.07.006

    23. [23]

      Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367−392  doi: 10.1016/j.addr.2016.06.012

    24. [24]

      Da Costa, H. M.; Abrantes T. A. S.; Nunes, R. C. R.; Visconte, L. L. Y.; Furtado, C. R. G. Design and analysis of experiments in silica filled natural rubber compounds-effect of castor oil. Polym. Test. 2003, 22(7), 769−777  doi: 10.1016/S0142-9418(03)00011-4

    25. [25]

      Cam, D.; Marucci, M. Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polymer 1997, 38(8), 1879−1884  doi: 10.1016/S0032-3861(96)00711-2

    26. [26]

      White, R. P.; Lipson, J. E. G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49(11), 3987−4007  doi: 10.1021/acs.macromol.6b00215

    27. [27]

      Eili, M.; Shameli, K.; Ibrahim, N. A.; Wan Yunus, W. M. Z. Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH nanolayers. Int. J. Mol. Sci. 2012, 13(12), 7938−7951  doi: 10.3390/ijms13077938

    28. [28]

      Jiang, L. J.; Zhang, J.; Wolcott, M. P. Comparison of polylactide/nano-sized calcium carbonate and polylactide/ montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 2007, 48(26), 7632−7644  doi: 10.1016/j.polymer.2007.11.001

    29. [29]

      Shankar, S.; Rhim, J. V. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT-Food Sci. Technol. 2016, 72, 149−156  doi: 10.1016/j.lwt.2016.04.054

    30. [30]

      Egger, S.; Lehman, R. P.; Height, M. J.; Loessner, M. J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75(9), 2973−2976  doi: 10.1128/AEM.01658-08

    31. [31]

      Shen, Y. CHEN, Z.; Hou, Z.; Li, T.; Lu, X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng. 2015, 9(5), 912−918  doi: 10.1007/s11783-015-0789-7

    32. [32]

      Dhas, S. P.; Shiny, P. J.; Khan, S.; Mukherjee, A.; Chandrasekaran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basis. Microbiol. 2014, 54(9), 916−927  doi: 10.1002/jobm.v54.9

  • 加载中
    1. [1]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    2. [2]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    3. [3]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    4. [4]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    7. [7]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    8. [8]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    9. [9]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    10. [10]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    13. [13]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    14. [14]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    15. [15]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    18. [18]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    19. [19]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    20. [20]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return