Citation: Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 905-917. doi: 10.1007/s10118-018-2118-7 shu

Recent Progress in Shape Memory Polymers for Biomedical Applications

  • Corresponding author: Shao-Bing Zhou, shaobingzhou@swjtu.cn
  • Received Date: 1 January 2018
    Revised Date: 1 January 2018
    Accepted Date: 30 January 2018
    Available Online: 19 March 2018

  • Shape memory polymers (SMPs) as one type of the most important smart materials have attracted increasing attention due to their promising application in the field of biomedicine, textiles, aerospace et al. Following a brief intoduction of the conception and classification of SMPs, this review is focused on the progress of shape memory polymers for biomedical applications. The progress includes the early researches based on thermo-induced SMPs, the improvement of the stimulus, the development of shape recovery ways and the expansion of the applications in biomedical field. In addition, future perspectives of SMPs in the field of biomedicine are also discussed.
  • 加载中
    1. [1]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79−120.  doi: 10.1016/j.progpolymsci.2015.04.001

    2. [2]

      Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445−471.  doi: 10.1146/annurev-matsci-082908-145419

    3. [3]

      Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37(12), 1720−1763.  doi: 10.1016/j.progpolymsci.2012.06.001

    4. [4]

      Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49-50, 3−33.  doi: 10.1016/j.progpolymsci.2015.04.002

    5. [5]

      Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17(16), 1543−1558.  doi: 10.1039/b615954k

    6. [6]

      Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823−1827.  doi: 10.1002/marc.v30:21

    7. [7]

      Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088−4090.  doi: 10.1016/j.matlet.2008.05.073

    8. [8]

      Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845−8870.  doi: 10.1021/acs.macromol.7b01607

    9. [9]

      Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673−1676.  doi: 10.1126/science.1066102

    10. [10]

      Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shape-memory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369−1381.  doi: 10.1002/(ISSN)1099-0518

    11. [11]

      Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587−592.  doi: 10.1021/bm049477j

    12. [12]

      Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.  doi: 10.1088/0964-1726/24/12/125002

    13. [13]

      Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064−2068.  doi: 10.1016/j.compscitech.2008.08.016

    14. [14]

      Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984−5992.  doi: 10.1039/C6TA00930A

    15. [15]

      Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex. Polymer 2008, 49(15), 3205−3210.  doi: 10.1016/j.polymer.2008.05.030

    16. [16]

      Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288−4295.  doi: 10.1016/j.biomaterials.2006.03.043

    17. [17]

      Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170−180.

    18. [18]

      Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pH-Responsive shape memory poly(ethylene glycol)-poly(epsilon-caprolactone)-based polyurethane/ cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988−12999.  doi: 10.1021/acsami.5b02940

    19. [19]

      Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537−542.  doi: 10.1016/j.compositesb.2010.07.001

    20. [20]

      Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865−9874.  doi: 10.1039/c3ra41217b

    21. [21]

      Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581−589.  doi: 10.1007/s10856-011-4475-4

    22. [22]

      Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608−1619.  doi: 10.1002/adhm.v3.10

    23. [23]

      Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-cross-linked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828−1836.  doi: 10.1021/ma4023229

    24. [24]

      Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855−6866.  doi: 10.1039/C4TB01155D

    25. [25]

      Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520−105208.  doi: 10.1021/am402091m

    26. [26]

      Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545−54.  doi: 10.1021/am5001344

    27. [27]

      Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461−4468.  doi: 10.1039/c3py00519d

    28. [28]

      Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.  doi: 10.1039/C4PY00474D

    29. [29]

      Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,L-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247−253.  doi: 10.1021/cm0619398

    30. [30]

      Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.  doi: 10.1039/c3ra00091e

    31. [31]

      Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613−20.

    32. [32]

      Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291−298.  doi: 10.1016/j.ijpharm.2014.01.029

    33. [33]

      Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(epsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581−589.  doi: 10.1007/s10856-011-4475-4

    34. [34]

      Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.  doi: 10.1039/b922943d

    35. [35]

      Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348−1356.  doi: 10.1016/j.polymer.2005.12.051

    36. [36]

      Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424−4428.  doi: 10.1016/j.polymer.2009.07.031

    37. [37]

      Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.  doi: 10.1063/1.1880448

    38. [38]

      Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637−6644.  doi: 10.1039/C6PY01302C

    39. [39]

      Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.  doi: 10.1039/b922220k

    40. [40]

      Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 2011, 44(17), 6827−6835.  doi: 10.1021/ma201502k

    41. [41]

      Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Water-induced shape-memory poly(D,L-lactide)/ microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101−108.  doi: 10.1016/j.carbpol.2014.01.031

    42. [42]

      Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866−884.  doi: 10.1016/j.addr.2012.01.020

    43. [43]

      Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055−1060.  doi: 10.1002/marc.201200153

    44. [44]

      Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739−1746.  doi: 10.1039/C5PY02010G

    45. [45]

      Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73−78.  doi: 10.1002/adma.v27.1

    46. [46]

      Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540−3545.  doi: 10.1073/pnas.0600079103

    47. [47]

      Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/ functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506−3514.  doi: 10.1021/am100692n

    48. [48]

      Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248−1259.  doi: 10.1016/j.actbio.2011.12.006

    49. [49]

      Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67−72.  doi: 10.1016/j.colsurfb.2009.01.009

    50. [50]

      Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471−1475.  doi: 10.1002/(ISSN)1521-4095

    51. [51]

      Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879−882.  doi: 10.1038/nature03496

    52. [52]

      Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquid‐crystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201−205.  doi: 10.1002/adma.200390045

    53. [53]

      Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 1986, 19(10), 2476−2480.  doi: 10.1021/ma00164a003

    54. [54]

      Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235−241.

    55. [55]

      Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20(17), 3335.  doi: 10.1039/b922992b

    56. [56]

      Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267−270.  doi: 10.1038/nature08863

    57. [57]

      Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043−18047.  doi: 10.1073/pnas.0608586103

    58. [58]

      Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(ε-caprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583−3594.  doi: 10.1002/adfm.v20:20

    59. [59]

      Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649−2656.  doi: 10.1002/adfm.201000052

    60. [60]

      Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymer-based shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569−1575.  doi: 10.1002/marc.v32.19

    61. [61]

      Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823−1827.  doi: 10.1002/marc.v30:21

    62. [62]

      Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543−4549.  doi: 10.1002/adfm.v21.23

    63. [63]

      Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175−180.  doi: 10.1021/ma102279y

    64. [64]

      Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743−748.  doi: 10.1002/adma.201202884

    65. [65]

      Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466−4469.  doi: 10.1002/adma.v25.32

    66. [66]

      Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccò, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915−1924.  doi: 10.1016/j.polymer.2012.02.053

    67. [67]

      Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768−1776.  doi: 10.1021/ma4023185

    68. [68]

      Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866−12874.  doi: 10.1021/ja205332w

    69. [69]

      Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.

    70. [70]

      Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439−445.  doi: 10.1002/(ISSN)1527-2648

    71. [71]

      Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018−1027.  doi: 10.1021/bm0610370

    72. [72]

      Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.  doi: 10.1063/1.4811134

    73. [73]

      Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155−1159.  doi: 10.1166/nnl.2012.1455

    74. [74]

      Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732−736.  doi: 10.1166/nnl.2013.1611

    75. [75]

      Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912−923.  doi: 10.1002/macp.v214.8

    76. [76]

      Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230−4234.  doi: 10.1021/ma400742g

    77. [77]

      Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.  doi: 10.1002/aenm.201600763

    78. [78]

      Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244−7256.  doi: 10.1039/c3cs35489j

    79. [79]

      Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276−32282.  doi: 10.1039/C4RA03829K

    80. [80]

      Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508−3514.  doi: 10.1039/c0jm00307g

    81. [81]

      Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152−161.  doi: 10.1021/am101012c

    82. [82]

      Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152−156.  doi: 10.1021/mz400017x

    83. [83]

      Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415−1426.  doi: 10.1002/polb.v54.14

    84. [84]

      Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896−28900.  doi: 10.1039/C4RA16833J

    85. [85]

      Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394−3398.  doi: 10.1002/adma.v21:32/33

    86. [86]

      Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173−57184.  doi: 10.1039/C4RA09898F

    87. [87]

      Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132−8140.  doi: 10.1016/j.biomaterials.2010.07.043

    88. [88]

      Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515−535.  doi: 10.1016/j.addr.2012.06.004

    89. [89]

      Sun, L.; Huang, W. M. Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684−2689.

    90. [90]

      Bilici, C.; Can, V.; Nöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442−7449.  doi: 10.1021/acs.macromol.6b01539

    91. [91]

      Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.  doi: 10.1016/j.biomaterials.2009.08.021

    92. [92]

      Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232−8244.  doi: 10.1016/j.actbio.2013.06.005

    93. [93]

      Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen's egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233−238.

    94. [94]

      Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019−1030.  doi: 10.1021/bm401911p

    95. [95]

      Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769−5778.  doi: 10.1002/smll.v12.41

    96. [96]

      Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Appl. Mater. Interfaces 2017, 9(23), 19725−19735.  doi: 10.1021/acsami.7b05933

  • 加载中
    1. [1]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    4. [4]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    5. [5]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    6. [6]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    7. [7]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    8. [8]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    9. [9]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    10. [10]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    11. [11]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    12. [12]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    13. [13]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    14. [14]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    15. [15]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    16. [16]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    17. [17]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    18. [18]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    19. [19]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    20. [20]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

Metrics
  • PDF Downloads(0)
  • Abstract views(814)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return