Recent Progress in Shape Memory Polymers for Biomedical Applications
- Corresponding author: Shao-Bing Zhou, shaobingzhou@swjtu.cn
Citation: Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 905-917. doi: 10.1007/s10118-018-2118-7
Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79−120.
doi: 10.1016/j.progpolymsci.2015.04.001
Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445−471.
doi: 10.1146/annurev-matsci-082908-145419
Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37(12), 1720−1763.
doi: 10.1016/j.progpolymsci.2012.06.001
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49-50, 3−33.
doi: 10.1016/j.progpolymsci.2015.04.002
Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17(16), 1543−1558.
doi: 10.1039/b615954k
Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823−1827.
doi: 10.1002/marc.v30:21
Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088−4090.
doi: 10.1016/j.matlet.2008.05.073
Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845−8870.
doi: 10.1021/acs.macromol.7b01607
Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673−1676.
doi: 10.1126/science.1066102
Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shape-memory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369−1381.
doi: 10.1002/(ISSN)1099-0518
Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587−592.
doi: 10.1021/bm049477j
Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.
doi: 10.1088/0964-1726/24/12/125002
Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064−2068.
doi: 10.1016/j.compscitech.2008.08.016
Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984−5992.
doi: 10.1039/C6TA00930A
Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex. Polymer 2008, 49(15), 3205−3210.
doi: 10.1016/j.polymer.2008.05.030
Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288−4295.
doi: 10.1016/j.biomaterials.2006.03.043
Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170−180.
Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pH-Responsive shape memory poly(ethylene glycol)-poly(epsilon-caprolactone)-based polyurethane/ cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988−12999.
doi: 10.1021/acsami.5b02940
Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537−542.
doi: 10.1016/j.compositesb.2010.07.001
Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865−9874.
doi: 10.1039/c3ra41217b
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581−589.
doi: 10.1007/s10856-011-4475-4
Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608−1619.
doi: 10.1002/adhm.v3.10
Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-cross-linked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828−1836.
doi: 10.1021/ma4023229
Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855−6866.
doi: 10.1039/C4TB01155D
Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520−105208.
doi: 10.1021/am402091m
Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545−54.
doi: 10.1021/am5001344
Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461−4468.
doi: 10.1039/c3py00519d
Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.
doi: 10.1039/C4PY00474D
Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,L-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247−253.
doi: 10.1021/cm0619398
Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.
doi: 10.1039/c3ra00091e
Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613−20.
Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291−298.
doi: 10.1016/j.ijpharm.2014.01.029
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(epsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581−589.
doi: 10.1007/s10856-011-4475-4
Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.
doi: 10.1039/b922943d
Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348−1356.
doi: 10.1016/j.polymer.2005.12.051
Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424−4428.
doi: 10.1016/j.polymer.2009.07.031
Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.
doi: 10.1063/1.1880448
Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637−6644.
doi: 10.1039/C6PY01302C
Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.
doi: 10.1039/b922220k
Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 2011, 44(17), 6827−6835.
doi: 10.1021/ma201502k
Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Water-induced shape-memory poly(D,L-lactide)/ microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101−108.
doi: 10.1016/j.carbpol.2014.01.031
Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866−884.
doi: 10.1016/j.addr.2012.01.020
Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055−1060.
doi: 10.1002/marc.201200153
Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739−1746.
doi: 10.1039/C5PY02010G
Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73−78.
doi: 10.1002/adma.v27.1
Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540−3545.
doi: 10.1073/pnas.0600079103
Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/ functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506−3514.
doi: 10.1021/am100692n
Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248−1259.
doi: 10.1016/j.actbio.2011.12.006
Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67−72.
doi: 10.1016/j.colsurfb.2009.01.009
Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471−1475.
doi: 10.1002/(ISSN)1521-4095
Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879−882.
doi: 10.1038/nature03496
Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquid‐crystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201−205.
doi: 10.1002/adma.200390045
Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 1986, 19(10), 2476−2480.
doi: 10.1021/ma00164a003
Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235−241.
Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20(17), 3335.
doi: 10.1039/b922992b
Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267−270.
doi: 10.1038/nature08863
Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043−18047.
doi: 10.1073/pnas.0608586103
Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(ε-caprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583−3594.
doi: 10.1002/adfm.v20:20
Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649−2656.
doi: 10.1002/adfm.201000052
Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymer-based shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569−1575.
doi: 10.1002/marc.v32.19
Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823−1827.
doi: 10.1002/marc.v30:21
Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543−4549.
doi: 10.1002/adfm.v21.23
Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175−180.
doi: 10.1021/ma102279y
Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743−748.
doi: 10.1002/adma.201202884
Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466−4469.
doi: 10.1002/adma.v25.32
Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccò, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915−1924.
doi: 10.1016/j.polymer.2012.02.053
Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768−1776.
doi: 10.1021/ma4023185
Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866−12874.
doi: 10.1021/ja205332w
Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.
Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439−445.
doi: 10.1002/(ISSN)1527-2648
Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018−1027.
doi: 10.1021/bm0610370
Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.
doi: 10.1063/1.4811134
Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155−1159.
doi: 10.1166/nnl.2012.1455
Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732−736.
doi: 10.1166/nnl.2013.1611
Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912−923.
doi: 10.1002/macp.v214.8
Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230−4234.
doi: 10.1021/ma400742g
Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.
doi: 10.1002/aenm.201600763
Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244−7256.
doi: 10.1039/c3cs35489j
Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276−32282.
doi: 10.1039/C4RA03829K
Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508−3514.
doi: 10.1039/c0jm00307g
Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152−161.
doi: 10.1021/am101012c
Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152−156.
doi: 10.1021/mz400017x
Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415−1426.
doi: 10.1002/polb.v54.14
Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896−28900.
doi: 10.1039/C4RA16833J
Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394−3398.
doi: 10.1002/adma.v21:32/33
Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173−57184.
doi: 10.1039/C4RA09898F
Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132−8140.
doi: 10.1016/j.biomaterials.2010.07.043
Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515−535.
doi: 10.1016/j.addr.2012.06.004
Sun, L.; Huang, W. M. Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684−2689.
Bilici, C.; Can, V.; Nöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442−7449.
doi: 10.1021/acs.macromol.6b01539
Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.
doi: 10.1016/j.biomaterials.2009.08.021
Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232−8244.
doi: 10.1016/j.actbio.2013.06.005
Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen's egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233−238.
Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019−1030.
doi: 10.1021/bm401911p
Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769−5778.
doi: 10.1002/smll.v12.41
Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Appl. Mater. Interfaces 2017, 9(23), 19725−19735.
doi: 10.1021/acsami.7b05933
Zhaoru Chen , Xiaoxu Liu , Haonan Chen , Jialong Li , Xiaofeng Wang , Jianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380