Citation: Xue-Pei Miao, Dao-Jian Cheng, Ya-Dong Dai, Yan Meng, Xiao-Yu Li. Origin of Modulus Improvement for Epoxide-terminated Hyperbranched Poly(ether sulphone)/DGEBA/TETA Systems[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 991-998. doi: 10.1007/s10118-018-2114-y shu

Origin of Modulus Improvement for Epoxide-terminated Hyperbranched Poly(ether sulphone)/DGEBA/TETA Systems

  • It has been experimentally shown that epoxide-terminated hyperbranched polyether sulphone (EHBPES) can significantly improve the mechanical properties of traditional diglycidyl ether of bisphenol A/triethylenetetramine (DGEBA/TETA) systems, but the origin of the improvement is still unclear. In this work, we used molecular dynamics (MD) simulations to gain a thorough understanding of the origin of modulus improvement for EHBPES/DGEBA/TETA systems. It is found that the modulus of EHBPES/DGEBA/TETA systems increases with the increase of EHBPES loading. In addition, the crosslinking density, cohesive energy density (CED), and free volume can be used to understand the modulus for EHBPES/DGEBA/TETA systems. It is shown that the highest modulus is achieved at 7 wt% EHBPES loading due to the highest crosslinking density and CED. When EHBPES loading is below 7 wt%, the higher CED and crosslinking density are responsible for the higher modulus. At higher loadings (> 7 wt%), the decreased modulus is closely related to the decreased crosslinking density and increased fractional free volume. It is expected that our results could be of great implications for designing high-performance epoxy materials.
  • 加载中
    1. [1]

      Zhang, D.; Chen, Y.; Jia, D. Toughness and reinforcement of diglycidyl ether of bisphenol-A by hyperbranched poly(trimellitic anhydride-butanediol glycol) ester epoxy resin. Polym. Compos. 2010, 30(7), 918−925

    2. [2]

      Zhang, D.; Jia, D. Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin. J. Appl. Polym. Sci. 2010, 101(4), 2504−2511

    3. [3]

      Chen, S.; Zhang, D.; Jiang, S.; Jia, D. Preparation of hyperbranched epoxy resin containing nitrogen heterocycle and its toughened and reinforced composites. J. Appl. Polym. Sci. 2012, 123(6), 3261−3269  doi: 10.1002/app.v123.6

    4. [4]

      Zhang, D.; Wu, H.; Li, T.; Zhang, A.; Peng, Y.; Jing, F. Preparation of high-performance flame-retardant hybrid material by hyperbranched polyphosphate ester. Polym. Compos. 2011, 32(1), 36−43  doi: 10.1002/pc.v32.1

    5. [5]

      Jin, F. L.; Park, S. J. Thermal properties and toughness performance of hyperbranched‐polyimide‐modified epoxy resins. J. Polym. Sci., Part B: Polym. Phys. 2006, 44(23), 3348−3356  doi: 10.1002/(ISSN)1099-0488

    6. [6]

      Gan, W.; Zhan, G.; Wang, M.; Yu, Y.; Xu, Y.; Li, S. Rheological behaviors and structural transitions in a polyethersulfone-modified epoxy system during phase separation. Colloid. Polym. Sci. 2007, 285(15), 1727−1731  doi: 10.1007/s00396-007-1758-x

    7. [7]

      Pillai, J. P.; Pionteck, J.; Häβbler, R.; Sinturel, C.; Mathew, V. S.; Thomas, S. Effect of cure conditions on the generated morphology and viscoelastic properties of a poly(acrylonitrile-butadiene-styrene) modified epoxy-amine system. Ind. Eng. Chem. Res. 2012, 51(6), 2586−2595  doi: 10.1021/ie2011017

    8. [8]

      Nguyen, F. N.; Berg, J. C. Novel core-shell (dendrimer) epoxy tougheners: Processing and hot-wet performance. Composites. Part A 2008, 39(6), 1007−1011  doi: 10.1016/j.compositesa.2008.03.005

    9. [9]

      Gao, C.; Yan, D. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29(3), 183−275  doi: 10.1016/j.progpolymsci.2003.12.002

    10. [10]

      Lv, J.; Meng, Y.; He, L.; Qiu, T.; Li, X.; Wang, H. Novel epoxidized hyperbranched poly(phenylene oxide): synthesis and application as a modifier for diglycidyl ether of bisphenol A. J. Appl. Polym. Sci. 2013, 128(1), 907−914  doi: 10.1002/app.38270

    11. [11]

      Luo, L.; Meng, Y.; Qiu, T.; Li, Z.; Yang, J.; Cao, X.; Li, X. Dielectric and mechanical properties of diglycidyl ether of bisphenol a modified by a new fluoro-terminated hyperbranched poly(phenylene oxide). Polym. Compos. 2013, 34(7), 1051−1060  doi: 10.1002/pc.v34.7

    12. [12]

      Miao, X.; Meng, Y.; Li, X. Epoxide-terminated hyperbranched polyether sulphone as triple enhancement modifier for DGEBA J. Appl. Polym. Sci. 2015, 132(17), 41910−41920

    13. [13]

      Miao, X.; Meng, Y.; Li, X. A novel all-purpose epoxy-terminated hyperbranched polyether sulphone toughener for an epoxy/amine system. Polymer 2015, 60, 88−95  doi: 10.1016/j.polymer.2015.01.034

    14. [14]

      Liu, T.; Nie, Y.; Zhang, L.; Chen, R.; Meng, Y.; Li, X. Dependence of epoxy toughness on the backbone structure of hyperbranched polyether modifiers. RSC Adv. 2015, 5(5), 3408−3416  doi: 10.1039/C4RA10974K

    15. [15]

      Komarov, P. V.; Chiu, Y, T, C.; Chen. S. M; Khalatur, P. G.; Reineker, P. Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules 2007, 40(22), 8104−8113  doi: 10.1021/ma070702+

    16. [16]

      Tam, L.; Lau, D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv. 2014, 4(62), 33074−33081  doi: 10.1039/C4RA04298K

    17. [17]

      Soni, N. J. Lin, P. H.; Khare, R. Effect of cross-linker length on the thermal and volumetric properties of cross-linked epoxy networks: A molecular simulation study. Polymer 2012, 53(4), 1015−1019  doi: 10.1016/j.polymer.2011.12.051

    18. [18]

      Li, C.; Strachan, A. Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer 2011, 52(13), 2920−2928  doi: 10.1016/j.polymer.2011.04.041

    19. [19]

      Tsige, M.; Stevens, M. J. Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules 2004, 37(3), 630−637

    20. [20]

      Yang, S.; Qu, J. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer 2012, 53(21), 4806−4817  doi: 10.1016/j.polymer.2012.08.045

    21. [21]

      Shudo, Y.; Izumi, A.; Hagita, K.; Nakao, T.; Shibayama, M. Structure-mechanical property relationships in crosslinked phenolic resin investigated by molecular dynamics simulation. Polymer 2017, 116, 506−514  doi: 10.1016/j.polymer.2017.02.037

    22. [22]

      Tam, L. H.; Lau, D. Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: An atomistic and experimental investigation. Polymer 2015, 57, 132−142  doi: 10.1016/j.polymer.2014.12.026

    23. [23]

      Vo, V. S.; Nguyen, V. H.; Mahouche-Chergui, S.; Carbonnier, B.; Tommaso, D. D.; Naili, S. From atomistic structure to thermodynamics and mechanical properties of epoxy/clay nanocomposites: Investigation by molecular dynamics simulations. Comp. Mater. Sci. 2017, 139, 191−201  doi: 10.1016/j.commatsci.2017.07.024

    24. [24]

      Zhang, Q. G.; Liu, Q. L.; Huang, S. P.; Hu, W. W.; Zhu, A. M. Microstructure-related performances of poly(vinyl alcohol)-silica hybrid membranes: a molecular dynamics simulation study. J. Mater. Chem. 2012, 22(21), 10860−10866  doi: 10.1039/c2jm30653k

    25. [25]

      Yu, B.; Fu, S.; Wu, Z.; Bai, H.; Ning, N.; Fu, Q. Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. Composites Part A 2015, 73, 155−165  doi: 10.1016/j.compositesa.2015.02.027

    26. [26]

      Li, K.; Huo, N.; Liu, X.; Cheng, J.; Zhang, J. Effects of the furan ring in epoxy resin on the thermomechanical properties of highly cross-linked epoxy networks: a molecular simulation study. RSC Adv. 2015, 6(1), 769−777

    27. [27]

      Shokuhfar, A.; Arab, B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J. Mol. Model. 2013, 19(9), 3719−3731  doi: 10.1007/s00894-013-1906-9

    28. [28]

      Jeyranpour, F.; Alahyarizadeh, G.; Arab, B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J. Mol. Graph. Model. 2015, 62, 157−164  doi: 10.1016/j.jmgm.2015.09.012

    29. [29]

      Wu, C.; Xu, W. J. Atomistic molecular modelling of crosslinked epoxy resin. Polymer 2006, 47(16), 6004−6009  doi: 10.1016/j.polymer.2006.06.025

    30. [30]

      Arab, B.; Shokouhfar, A. Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature. J. Mol. Model. 2013, 19(11), 5053−5062  doi: 10.1007/s00894-013-1996-4

    31. [31]

      Zhang, W.; Yang, Q.; Zhong, W.; Sui, G.; Yang, X. Mechanism of modulus improvement for epoxy resin matrices: A molecular dynamics simulation. React. Funct. Polym. 2017, 111, 60−67  doi: 10.1016/j.reactfunctpolym.2016.12.014

    32. [32]

      Gao, L.; Zhang, Q.; Li, H.; Yu, S.; Zhong, W.; Sui, G.; Yang, X. Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems: a methodology combining atomistic molecular simulation with experimental analyses. Polym. Chem. 2017, 8, 2016−2027  doi: 10.1039/C7PY00063D

    33. [33]

      Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M. Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 2012, 45(12), 5307−5315  doi: 10.1021/ma3007587

    34. [34]

      Yang, Q.; Yang, X.; Li, X.; Shi, L.; Sui, G. The curing and thermal transition behavior of epoxy resin: a molecular simulation and experimental study. RSC Adv. 2013, 3(20), 7452−7459  doi: 10.1039/c3ra40699g

    35. [35]

      Wang Z.; Lv, Q.; Chen, S.; Li, C.; Sun, S.; Hu, S. Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite: a molecular dynamics simulation study. ACS Appl. Mater. Interfaces. 2016, 8(11), 7499−7508  doi: 10.1021/acsami.5b11810

    36. [36]

      Bhadra, S.; Khastgir, D. Glass-rubber transition temperature of polyaniline: experimental and molecular dynamic simulation. Synth. Met. 2009, 159(12), 1141−1146  doi: 10.1016/j.synthmet.2009.01.052

    37. [37]

      Yilmaz, C.; Akalin, C.; Kocaman, E. S.; Suleman, A.; Yildiz, M. Monitoring Poisson’s ratio of glass fiber reinforced composites as damage index using biaxial fiber Bragg grating sensors. Polym. Test. 2016, 53, 98−107  doi: 10.1016/j.polymertesting.2016.05.009

    38. [38]

      Van Paepegem, W.; De Baere, I.; Lamkanfi, E.; Degrieck, J. Poisson’s ratio as a sensitive indicator of (fatigue) damage in fibre‐reinforced plastics. Fatigue & Fract. Eng. Mater. Struct. 2007, 30(4), 269−276

    39. [39]

      Luo, Z.; Jiang, J. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer 2010, 51(1), 291−299  doi: 10.1016/j.polymer.2009.11.024

    40. [40]

      Fu, Y.; Liao, L.; Lan, Y.; Yang, L.; Mei, L.; Liu, Y.; Hu, S. Molecular dynamics and mesoscopic dynamics simulations for prediction of miscibility in polypropylene/polyamide-11 blends. J. Mol. Struct. 2012, 1012, 113−118  doi: 10.1016/j.molstruc.2011.12.026

    41. [41]

      Kim, Y. H.; Webster, O. W. Water soluble hyperbranched polyphenylene: "a unimolecular micelle?" J. Am. Chem. Soc. 1990, 112(11), 4592−4593  doi: 10.1021/ja00167a094

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    6. [6]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    7. [7]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    8. [8]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    9. [9]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    14. [14]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    15. [15]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    16. [16]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    17. [17]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    18. [18]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    19. [19]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    20. [20]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

Metrics
  • PDF Downloads(0)
  • Abstract views(610)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return