Citation: Sen-He Chen, Bai-Heng Wu, Jin-Cheng Fu, Guo-Jun Wang, Ling-Shu Wan, Zhi-Kang Xu. Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 880-887. doi: 10.1007/s10118-018-2113-z shu

Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing

  • Corresponding author: Ling-Shu Wan, lswan@zju.edu.cn
  • Received Date: 18 October 2017
    Accepted Date: 20 January 2018
    Available Online: 12 July 2018

  • Polystyrene membranes with precisely controlled and vertically oriented pores are fabricated by a bidirectional freezing process. In this process, the influence of polymer in growth of diphenyl sulfone (DPS) crystals has been demonstrated by XRD and simulated by DFT based on the interaction between DPS crystal faces and polystyrene (PS). The influence of temperature gradient on membrane structures is also elucidated. Compared to the original membrane and modified traditional membranes, modified PS membranes with vertically oriented pores show large and stable fluxes in the processes of multiple oil and water separation.
  • 加载中
    1. [1]

      Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 2011, 50(7), 3798-3817.  doi: 10.1021/ie101928r

    2. [2]

      Li, J. H.; Zhang, D. B.; Ni, X. X.; Zheng, H.; Zhang, Q. Q. Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on ag nanoparticle self-assembled PCBMA polymer brush. Chinese J. Polym. Sci. 2017, 35(7), 809-822.  doi: 10.1007/s10118-017-1944-3

    3. [3]

      Tian, X.; Wang, Z.; Zhao, S.; Li, S.; Wang, J.; Wang, S. The influence of the nonsolvent intrusion through the casting film bottom surface on the macrovoid formation. J. Membr. Sci. 2014, 464, 8-19.  doi: 10.1016/j.memsci.2014.03.049

    4. [4]

      Liang, H. Q.; Li, H. N.; Yu, H. H.; Zhou, Y. T.; Xu, Z. K. Polysulfone membranes via thermally induced phase separation. Chinese J. Polym. Sci. 2017, 35(7), 846-856.  doi: 10.1007/s10118-017-1943-4

    5. [5]

      Zhang, M.; Zhang, C. F.; Yao, Z. K.; Shi, J. L.; Zhu, B. K.; Xu, Y. Y. Preparation of high density polyethylene/polyethylene-block-poly(ethylene glycol) copolymer blend porous membranes via thermally induced phase separation process and their properties. Chinese J. Polym. Sci. 2010, 28(3), 337-346.  doi: 10.1007/s10118-010-9022-0

    6. [6]

      Liu, M.; Chen, D. G.; Xu, Z. L.; Wei, Y. M.; Tong, M. Effects of nucleating agents on the morphologies and performances of poly(vinylidene fluoride) microporous membranes via thermally induced phase separation. J. Appl. Polym. Sci. 2013, 128(1), 836-844.  doi: 10.1002/app.38234

    7. [7]

      Mu, C.; Su, Y.; Sun, M.; Chen, W.; Jiang, Z. Fabrication of microporous membranes by a feasible freeze method. J. Membr. Sci. 2010, 361(1-2), 15-21.  doi: 10.1016/j.memsci.2010.06.021

    8. [8]

      Ou, Y.; Lv, C. J.; Yu, W.; Mao, Z. W.; Wan, L. S.; Xu, Z. K. Fabrication of perforated isoporous membranes via a transfer-free strategy: Enabling high-resolution separation of cells. ACS Appl. Mater. Inter. 2014, 6(24), 22400-22407.  doi: 10.1021/am506419z

    9. [9]

      Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Using soft lithography to pattern highly oriented polyacetylene (HOPA) films via solventless polymerization. Adv. Mater. 2004, 16 (15), 1356-1359.  doi: 10.1002/(ISSN)1521-4095

    10. [10]

      Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat. Mater. 2004, 3(5), 337-341.  doi: 10.1038/nmat1107

    11. [11]

      Quake, S. R.; Scherer, A. From micro-to nanofabrication with soft materials. Science 2000, 290(5496), 1536-1540.  doi: 10.1126/science.290.5496.1536

    12. [12]

      Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004, 25(5), 877-886.  doi: 10.1016/S0142-9612(03)00593-3

    13. [13]

      Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4(10), 787-793.  doi: 10.1038/nmat1487

    14. [14]

      Wu, J.; Zhao, Q.; Sun, J.; Zhou, Q. Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 2012, 8(13), 3620-3626.  doi: 10.1039/c2sm07411g

    15. [15]

      Ma, H.; Hu, J.; Ma, P. X. Polymer scaffolds for small-diameter vascular tissue engineering. Adv. Funct. Mater. 2010, 20(17), 2833-2841.  doi: 10.1002/adfm.201000922

    16. [16]

      Kim, B. S.; Lee, J. Directional crystallization of dioxane in the presence of PVDF producing porous membranes. J. Cryst. Growth. 2013, 373, 45-49.  doi: 10.1016/j.jcrysgro.2012.09.005

    17. [17]

      Kim, B. S.; Lee, M. K.; Lee, J. Large-area PVDF membranes with through-thickness porosity prepared by uni-directional freezing. Macromol. Res. 2013, 21(2), 194-201.  doi: 10.1007/s13233-013-1020-y

    18. [18]

      Mandoli, C.; Mecheri, B.; Forte, G.; Pagliari, F.; Pagliari, S.; Carotenuto, F.; Fiaccavento, R.; Rinaldi, A.; Di Nardo, P.; Licoccia, S.; Traversa, E. Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds. Macromol. Biosci. 2010, 10(2), 127-138.  doi: 10.1002/mabi.v10:2

    19. [19]

      Wang, B.; Ji, J.; Li, K. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration. Nat. Commun. 2016, 7, 12804.  doi: 10.1038/ncomms12804

    20. [20]

      Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures. Adv. Mater. 2009, 21(21), 2180-2184.  doi: 10.1002/adma.v21:21

    21. [21]

      Liang, H. Q.; Ji, K. J.; Zha, L. Y.; Hu, W. B.; Ou, Y.; Xu, Z. K. Polymer membranes with vertically oriented pores constructed by 2D Freezing at ambient temperature. ACS Appl. Mater. Inter. 2016, 8(22), 14174-14181.  doi: 10.1021/acsami.6b03071

    22. [22]

      Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A. Gaussian 09. Gaussian, Inc., Wallingford CT, 2010.

    23. [23]

      Qian, L.; Zhang, H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86(2), 172-184.  doi: 10.1002/jctb.v86.2

    24. [24]

      Kim, J. W.; Tazumi, K.; Okaji, R.; Ohshima, M. Honeycomb monolith-structured silica with highly ordered, three-dimensionally interconnected macroporous walls. Chem. Mater. 2009, 21(15), 3476-3478.  doi: 10.1021/cm901265y

    25. [25]

      Chu, Z.; Feng, Y.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54(8), 2328-2338.  doi: 10.1002/anie.201405785

    26. [26]

      Cui, P.; Jing, X. F.; Yuan, Y.; Zhu, G. S. Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO2 separation. Chinese Chem. Lett. 2016, 27(9), 1479-1484.  doi: 10.1016/j.cclet.2016.03.038

    27. [27]

      Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. K. Janus membranes: exploring duality for advanced separation. Angew. Chem. Int. Ed. 2016, 55(43), 13398-13407.  doi: 10.1002/anie.201601589

    28. [28]

      Wu, M. B.; Yang, H. C.; Wang, J. J.; Wu, G. P.; Xu, Z. K. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification. ACS Appl. Mater. Inter. 2017, 9(6), 5062-5066.  doi: 10.1021/acsami.7b00017

  • 加载中
    1. [1]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    2. [2]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    5. [5]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    6. [6]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    9. [9]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    10. [10]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    11. [11]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    12. [12]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    13. [13]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    14. [14]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    17. [17]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    18. [18]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

Metrics
  • PDF Downloads(0)
  • Abstract views(670)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return