Citation: Li-Na Wang, Huan-Huan Zhang, Lin Xu, Bin-Yuan Liu, Tong-Fei Shi, Shi-Chun Jiang, Li-Jia An. Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 984-990. doi: 10.1007/s10118-018-2111-1 shu

Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption

  • We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the silanized Si substrate. Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films. On the silanized Si substrate, the 3SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result, the wetting layer forms more easily. For LPS films, with the decrease of annealing temperature, the kinetics of polymer film changes from exponential behavior to slip dewetting. As a comparison, the stability of 3SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior. The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting. Additionally, Brownian dynamics (BD) simulation shows that the absolute values of adsorption energy (ε) gradually increase from linear polymer (−0.3896) to ring polymer (−0.4033) and to star polymer (−0.4264), which is consistent with the results of our adsorption experiments.
  • 加载中
    1. [1]

      Cai, X.; Yuan, H.; Blencowe, A.; Qiao, G. G.; Genzer, J.; Spontak, R. J. Film-stabilizing attributes of polymeric core-shell nanoparticles. ACS Nano 2015, 9(8), 7940−7949  doi: 10.1021/acsnano.5b00237

    2. [2]

      Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373−382  doi: 10.1021/ma501262x

    3. [3]

      Luo, H.; Gersappe, D. Dewetting dynamics of nanofilled polymer thin films. Macromolecules 2004, 37(15), 5792−5799  doi: 10.1021/ma025691t

    4. [4]

      Feng, Y.; Karim, A.; Weiss, R. A.; Douglas, J. F.; Han, C. C. Control of polystyrene film dewetting through sulfonation and metal complexation. Macromolecules 1998, 31(2), 484−493  doi: 10.1021/ma9706541

    5. [5]

      Henn, G.; Bucknall, D. G.; Stamm, M.; Vanhoorne, P.; Jérôme, R. Chain end effects and dewetting in thin polymer films. Macromolecules 1996, 29(12), 4305−4313  doi: 10.1021/ma9500392

    6. [6]

      Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174−1182

    7. [7]

      Wang, W. C.; Shi, K., Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475−482  doi: 10.1007/s10118-016-1769-5

    8. [8]

      Zhu, D. S.; Liu, Y. X.; Chen, E. Q.; Li, M.; Cheng, S. Z. D. Pseudo-dewetting behavior of low molecular weight poly(ethylene oxide) melts on mica surface. Acta Polymerica Sinica (in Chinese) 2006, (9), 1125−1128

    9. [9]

      Mukherjee, R. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717−8740  doi: 10.1039/C5SM01724F

    10. [10]

      Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373−382  doi: 10.1021/ma501262x

    11. [11]

      Mukherjee, R.; Das, S.; Das, A.; Sharma, S. K.; Raychaudhuri, A. K.; Sharma, A. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics. ACS Nano 2010, 4(7), 3709−3724  doi: 10.1021/nn901912d

    12. [12]

      Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251  doi: 10.1103/PhysRevLett.81.1251

    13. [13]

      Gabriele, S.; Sclavons, S.; Reiter, G.; Damman, P. Disentanglement time of polymers determines the onset of rim instabilities in dewetting. Phys. Rev. Lett. 2006, 96(15), 156105  doi: 10.1103/PhysRevLett.96.156105

    14. [14]

      Damman, P.; Gabriele, S.; Coppée, S.; Desprez, S.; Villers, D.; Vilmin, T.; Raphaël, E.; Hamieh, M.; Akhrass, S. A.; Reiter, G. Relaxation of residual stress and reentanglement of polymers in spin-coated films. Phys. Rev. Lett. 2007, 99(3), 036101  doi: 10.1103/PhysRevLett.99.036101

    15. [15]

      de Silva, J. P.; Geoghegan, M.; Higgins, A. M.; Krausch, G.; David, M. O.; Reiter, G. Switching layer stability in a polymer bilayer by thickness variation. Phys. Rev. Lett. 2007, 98(26), 267802  doi: 10.1103/PhysRevLett.98.267802

    16. [16]

      Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmin, T.; Raphael, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4(10), 754−758  doi: 10.1038/nmat1484

    17. [17]

      Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75  doi: 10.1103/PhysRevLett.68.75

    18. [18]

      Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344−1351  doi: 10.1021/la00029a031

    19. [19]

      Redon, C.; Brochard-Wyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(6), 715  doi: 10.1103/PhysRevLett.66.715

    20. [20]

      Masson, J.; Green, P. F. Hole formation in thin polymer films: a two-stage process. Phys. Rev. Lett. 2002, 88(20), 205504  doi: 10.1103/PhysRevLett.88.205504

    21. [21]

      Brochard-Wyart, F.; Debrégeas, G.; Fondecave, R.; Martin, P. Dewetting of supported viscoelastic polymer films: birth of rims. Macromolecules 1997, 30(4), 1211−1213  doi: 10.1021/ma960929x

    22. [22]

      Jacobs, K. Growth of holes in liquid films with partial slippage. Langmuir 1998, 14(18), 4961−4963  doi: 10.1021/la9804435

    23. [23]

      Reiter, G.;Auroy, P.; Auvray, L. Instabilities of thin polymer films on layers of chemically identical grafted molecules. Macromolecules 1996, 29(6), 2150−2157  doi: 10.1021/ma950297z

    24. [24]

      Jiang, N.; Cheung, J.; Guo, Y.; Endoh, M. K.; Koga, T.; Yuan, G.; Satija, S. K. Stability of adsorbed polystyrene nanolayers on silicon substrates. Macromol. Chem. Phys. 2017, 1700326  doi: 10.1002/macp.201700326

    25. [25]

      Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 2016, 12(6), 1801−8109  doi: 10.1039/C5SM02435H

    26. [26]

      Bal, J. K.;Beuvier, T.; Unni, A. B.; Chavez Panduro, E. A.; Vignaud, G.; Delorme, N.; Gibaud, A. Stability of polymer ultrathin films (< 7 nm) made by a top-down approach. ACS Nano 2015, 9(8), 8184−8193  doi: 10.1021/acsnano.5b02381

    27. [27]

      Xu, L.; Yu, X. F.; Shi, T. F.; An, L. J. Investigation of the dewetting inhibition mechanism of thin polymer films. Soft Matter 2009, 5(10), 2109−2116  doi: 10.1039/b818824f

    28. [28]

      Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 2011, 107(11), 118303  doi: 10.1103/PhysRevLett.107.118303

    29. [29]

      Glynos, E.; Chremos, A.; Frieberg, B.; Sakellariou, G.; Green, P. F. Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 2014, 47(3), 1137−1143  doi: 10.1021/ma4024119

    30. [30]

      Granick, S.; Zhu, Y. X.; Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2003, 2(4), 221−227  doi: 10.1038/nmat854

    31. [31]

      Zhu, Y.; Granick, S. Apparent slip of Newtonian fluids past adsorbed polymer layers. Macromolecules 2002, 35(12), 4658−4663  doi: 10.1021/ma020043v

    32. [32]

      Lauga, E.; Brenner, M. P. Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys. Rev. E 2004, 70(2), 026311  doi: 10.1103/PhysRevE.70.026311

    33. [33]

      Jenkel, E. Adsorption of high polymers from solution. Z. Elektrochem 1951, 55, 612−618

    34. [34]

      Tan, H. Y.; Xu, D. H.; Wan, D.; Wang, Y. J.; Wang, L.; Zheng, J.; Liu, F.; Ma, L.; Tang, T. Melt viscosity behavior of C60 containing star polystyrene composites. Soft Matter 2013, 9(27), 6282−6290  doi: 10.1039/c3sm00103b

    35. [35]

      Liu, B.; Wang, H.; Zhang, L.; Yang, G.; Liu, X.; Kim, I. A facile approach for the synthesis of cyclic poly(N-isopropylacrylamide) based on an anthracene-thiol click reaction. Polym. Chem. 2013, 4(8), 2428−2431  doi: 10.1039/c3py00184a

    36. [36]

      Xu, L.; Sharma, A.; Joo, S. W. Substrate heterogeneity induced instability and slip in polymer thin films: dewetting on silanized surfaces with variable grafting density. Macromolecules 2010, 43(18), 7759−7762  doi: 10.1021/ma1010028

    37. [37]

      Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54(12), 5237−5247  doi: 10.1063/1.1674820

    38. [38]

      Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33(5), 3628  doi: 10.1103/PhysRevA.33.3628

    39. [39]

      Sides, S. W.; Grest, G. S.; Stevens, M. J. Large-scale simulation of adhesion dynamics for end-grafted polymers. Macromolecules 2002, 35(2), 566−573  doi: 10.1021/ma0114739

    40. [40]

      Ermak, D.; McCammon, J. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69(4), 1352−1360  doi: 10.1063/1.436761

    41. [41]

      Kosmas, M. K. Ideal polymer chains of various architectures at a surface. Macromolecules 1990, 23(7), 2061−2065  doi: 10.1021/ma00209a031

    42. [42]

      Reiter, G.; Akhrass, S.; Hamieh, M.; Damman, P.; Gabriele, S.; Vilmin, T.; Raphaël, E. Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 2009, 166(1), 165−172  doi: 10.1140/epjst/e2009-00900-5

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    3. [3]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    4. [4]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    5. [5]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    6. [6]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    12. [12]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    13. [13]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    14. [14]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    15. [15]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    18. [18]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    19. [19]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    20. [20]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

Metrics
  • PDF Downloads(0)
  • Abstract views(638)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return