Citation: Xiang-Hui Han, Xi-Wen Yang, Sheng Chen, Hang Luo, Dou Zhang, Hai-Liang Zhang. Multiple Effects Tailoring the Self-organization Behaviors of Triphenylene Side-chain Liquid Crystalline Polymers via Changing the Spacer Length[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 960-969. doi: 10.1007/s10118-018-2108-9 shu

Multiple Effects Tailoring the Self-organization Behaviors of Triphenylene Side-chain Liquid Crystalline Polymers via Changing the Spacer Length

  • Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP, m = 2, 3, 4, 6, 8, which is the number of carbon atom in the flexible alkyl spacers) have been successfully synthesized via free radical polymerization. The differential scanning calorimetry (DSC), polarized light microscopy (POM), ultraviolet-visible spectroscopy (UV-Vis), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the influence of multiple effects on the self-organization behaviors of P-m-TP, including steric effect, decoupling effect and π-π stacking effect. The experimental results revealed that P-m-TP (m = 2, 3, 4) formed the columnar phase which was developed by the TP moieties and the main chain as a whole, suggesting that the side-chains had strong steric effect even though the number of spacer length (m) exceeded 4. In addition, the clearing points (Tis) of the polymers were above 300 °C. When m = 6 and 8, the polymers displayed hexagonal columnar phase and exhibited the low Tis (91 and 80 °C respectively), originating from the self-assembly of triphenylene due to the decoupling effect and π-π stacking effect. This work offers a viable and inspiring pathway to control the phase transition temperature and phase structure of TP SCLCPs via simply tailoring the spacer length and increasing the alkyl tail length of TP.
  • 加载中
    1. [1]

      Liu, Y.; Wei, W.; Xiong, H. Polyether based side-chain liquid crystalline polymers: anionic polymerization and phase structures. Polymer 2013, 54(24), 6572−6579  doi: 10.1016/j.polymer.2013.09.056

    2. [2]

      Zhao, W.; Lin, B. P.; Zhang, X. Q.; Sun, Y.; Yang, H. Polysiloxane side-chain liquid crystalline polymers prepared by alkyne hydrosilylation. Chinese J. Polym. Sci. 2015, 33(10), 1431−1441  doi: 10.1007/s10118-015-1697-9

    3. [3]

      Yu, Z. Q.; Lam, J. W. Y.; Zhu, C. Z.; Chen, E. Q.; Tang, B. Z. Side-chain liquid crystalline polyacetylenes with increasing length of alkyl tails: from highly ordered smectic to smectic C phase. Macromolecules 2013, 46(3), 588−596  doi: 10.1021/ma302540k

    4. [4]

      Yuan, Q. L.; Liu, W. J.; Deng, Y.; Ling, Y.; Tang, H. Y. Synthesis, characterization and phase behaviors of polypeptides bearing biphenyl mesogens and oligo-ethylene-glycol tails. Chinese J. Polym. Sci. 2015, 33(8), 1150−1161  doi: 10.1007/s10118-015-1665-4

    5. [5]

      Zhao, R. Y.; Zhao, T. P.; Jiang, X. Q.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E. Q. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29(12), 1605908

    6. [6]

      Chen, S. Ling, A., Zhang, H. L . Synthesis and phase behaviors of side-chain liquid-crystalline polymers containing azobenzene mesogen with the different length alkyl tail. J. Polym. Sci., Part A: Polym. Chem. ; 2013, 51(13), 2759−2768  doi: 10.1002/pola.26683

    7. [7]

      Ni, B.; Liao, J. Q.; Chen, S.; Zhang, H. L. Influence of alkoxy tail length on the phase behaviors of side-chain liquid crystalline polymers without the spacer. RSC Adv. 2015, 5(12), 9035−9043  doi: 10.1039/C4RA15361H

    8. [8]

      Ban, J. F.; Chen, S.; Zhang, H. L. Synthesis and liquid crystalline behavior of side chain liquid crystalline polymers containing triphenylene discotic mesogens with different length flexible spacers. Chinese J. Polym. Sci. 2015, 33(9), 1245−1259  doi: 10.1007/s10118-015-1672-5

    9. [9]

      Ni, B.; Chen, S.; Zhang, H. L. Influence of main-chain and molecular weight on the phase behaviors of side-chain liquid crystalline polymers without the spacer. New J. Chem. 2015, 39(8), 6568−6577  doi: 10.1039/C5NJ01315A

    10. [10]

      Zhou, F.; Li, Y. W.; Jiang, Q.; Zhang, Z.; Tu, Y. F.; Chen, X. F.; Zhou, N.; Zhu, X. L. Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens: facile synthesis and topological effects study. Polym. Chem. 2015, 6(38), 6885−6893  doi: 10.1039/C5PY01003A

    11. [11]

      Cook, A. G.; Inkster, R. T.; Martinez-Felipe, A; Imrie, C. T. Synthesis and phase behaviour of a homologous series of polymethacrylate-based side-chain liquid crystal polymers. Eur. Polym. J. 2012, 48(4), 821−829  doi: 10.1016/j.eurpolymj.2012.01.021

    12. [12]

      He, C.; Zhang, C.; Zhang, O. Synthesis and thermal properties of polythioether-based liquid-crystalline polymers containing azobenzene in the side chain. Polym. Int. 2009, 58(9), 1071−1077  doi: 10.1002/pi.v58:9

    13. [13]

      Xiang, Z.; Chen, S.; Li, P.; Zhang, H. L. Influence of alkyl tail length on self-organisation of side-chain liquid crystalline polymers with biphenyl hemiphasmidic mesogens. Liq. Cryst. 2017, 44(6), 1031−1043  doi: 10.1080/02678292.2016.1256442

    14. [14]

      Yang, M.; Mao, D.; Chen, S.; Zhang, H. L. Design, synthesis and thermotropic self-organization of dendronized polystyrenes with different length alkyl tails. Polym. Chem. 2016, 7(34), 5445−5455  doi: 10.1039/C6PY01062H

    15. [15]

      Zheng, J. F.; Liu, X.; Chen, X. F.; Yang, S.; Chen, E. Q. Hemiphasmidic side-chain liquid crystalline polymer: from smectic C phase to columnar phase with a bundle of chains as its building block. ACS Macro Lett. 2012, 1(5), 641−645  doi: 10.1021/mz3001435

    16. [16]

      Cheng, Z. Y.; Ren, B. Y.; He, S. Y.; Tang, Z. Mesomorphous structure change by tail chain number in ionic liquid crystalline complexes of linear polymer and amphiphile. Chin. Chem. Lett. 2011, 22(11), 1375−1378  doi: 10.1016/j.cclet.2011.05.024

    17. [17]

      Makowski, T.; Ganicz, T.; Zajaczkowski, W.; Pisula, W.; Stanczyk1, W. A.; Tracz, A. Synthesis and thermotropic behavior of side chain polysiloxane bearing triphenylene moiety. Express Polym. Lett. 2015, 9(7), 636−646  doi: 10.3144/expresspolymlett.2015.59

    18. [18]

      Liu, X.; Chen, X.; Wang, J.; Chen, G.; Zhang, H. L. Hydrogen-bonded polymers with bent-shaped side chains and poly(4-vinylpridine) backbone: phase behavior and thin film morphologies. Macromolecules 2014, 47(12), 3917−3925  doi: 10.1021/ma500794y

    19. [19]

      Yao, D.; Zhang, B. Y.; Sun, Q. J.; Zhang, L. F. Synthesis and properties of side-chain liquid-crystalline polysiloxanes containing hemiphasmidic mesogens. J. Appl. Polym. Sci. 2005, 95(4), 946−952  doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2-and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π-π interactions. Adv. Funct. Mater. 2015, 25(8), 1180−1192  doi: 10.1002/adfm.v25.8

    21. [21]

      Chandrasekhar, S.; Ranganath, G. S. Discotic liquid crystals. Rep. Prog. Phys. 1990, 53(1), 57−84  doi: 10.1088/0034-4885/53/1/002

    22. [22]

      Ganicz, T, Stańczyk, W. Side-chain liquid crystal polymers (SCLCP): methods and materials. An overview. Materials 2009, 2(1), 95−128

    23. [23]

      An, L.; Jing, M.; Xiao, B.; Zhao, K. Q. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals. Chin. Phys. B 2016, 25(9), 096401−7  doi: 10.1088/1674-1056/25/9/096401

    24. [24]

      Mishra, M.; Kumar, S.; Dhar, R. Effect of dispersed colloidal gold nanoparticles on the electrical properties of a columnar discotic liquid crystal. RSC Adv. 2014, 4(107), 62404−62412  doi: 10.1039/C4RA11541D

    25. [25]

      Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2 and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π-π interactions. Adv. Funct. Mater. 2015, 25(8), 1161−1161  doi: 10.1002/adfm.v25.8

    26. [26]

      Kushida, T.; Shuto, A.; Yoshio, M.; Kato, T.; Yamaguchi, S. A planarized triphenylborane mesogen: discotic liquid crystals with ambipolar charge-carrier transport properties. Angew. Chem. Int. Ed. 2015, 127(23), 7026−7029  doi: 10.1002/ange.201502678

    27. [27]

      Aramata, K.; Kamachi, M.; Takahashi, M.; Yamagishi, A. Orientation of porphyrin moieties in Langmuir-Blodgett films of tetraphenylporphyrin vinyl monomers and their polymers. Langmuir 1997, 13(19), 5161−5167  doi: 10.1021/la970211q

    28. [28]

      Xing, C.; Lam, J. W. Y.; Zhao, K.; Tang, B. Z. Synthesis and liquid crystalline properties of poly(1-alkyne)s carrying triphenylene discogens. J. Polym. Sci., Part A: Polym. Chem. 2008, 46(9), 2960−2974  doi: 10.1002/(ISSN)1099-0518

    29. [29]

      Mu, B.; Pan, S.; Chen, D. Z. Well-organized columnar superlattices via positive coupling between polymer backbone and discotic side groups. Macromolecules 2015, 48(19), 6768−6780  doi: 10.1021/acs.macromol.5b01510

    30. [30]

      Mu, B.; Wu, B.; Pan, S.; Chen, D. Z. Hierarchical self-organization and uniaxial alignment of well synthesized side-chain discotic liquid crystalline polymers. Macromolecules 2015, 48(8), 2388−2398  doi: 10.1021/acs.macromol.5b00415

    31. [31]

      Finkelmann, H, Ringsdorf, H, Wendorff, J H. Model considerations and examples of enantiotropic liquid crystalline polymers. Polyreactions in ordered systems. Macromol. Chem. Phys. 1978, 179(1), 273−276  doi: 10.1002/macp.1978.021790129

    32. [32]

      Al-Lawati, Z. H.; Bushby, R. J.; Evans, S. D. Alignment of a columnar hexagonal discotic liquid crystal on self-assembled monolayers. J. Phys. Chem. C 2013, 117(15), 7533−7539  doi: 10.1021/jp3111056

    33. [33]

      Zeng, D.; Tahar-Djebbar, I.; Xiao, Y.; Attias, A. Intertwined lamello-columnar coassemblies in liquid-crystalline side-chain π-conjugated polymers: toward a new class of nanostructured supramolecular organic semiconductors. Macromolecules 2014, 47(5), 1715−1731  doi: 10.1021/ma4020356

    34. [34]

      Wu, B.; Mu, B.; Wang, S.; Chen, D. Z. Triphenylene-based side chain liquid crystalline block copolymers containing a PEG block: controlled synthesis, microphase structures evolution and their interplay with discotic mesogenic orders. Macromolecules 2013, 46(8), 2916−2929  doi: 10.1021/ma400655t

    35. [35]

      Mu, B.; Li, Q.; Li, X.; Chen, D. Z. Cyclic polymers with pendant triphenylene discogens: convenient synthesis and topological effect on thermotropic liquid crystal behavior and fluorescence enhancement. Polym. Chem. 2016, 7(39), 6034−6038  doi: 10.1039/C6PY01135G

    36. [36]

      Zhang, L.; Chen, S.; Zhao, H.; Fan, X. H.; Zhou, Q. F. Synthesis and properties of a series of mesogen-jacketed liquid crystalline polymers with polysiloxane backbones. Macromolecules 2010, 43(14), 6024−6032  doi: 10.1021/ma100847g

    37. [37]

      Zhu, Y. F.; Guan, X. L.; Shen, Z.; Fan, X. H.; Zhou, Q. F. Competition and promotion between two different liquid-crystalline building blocks: mesogen-jacketed liquid-crystalline polymers and triphenylene discotic liquid crystals. Macromolecules 2012, 45(8), 3346−3355  doi: 10.1021/ma300538h

    38. [38]

      Gao, L.; Shen, Z.; Fan, X. H.; Zhou, Q. F. Mesogen-jacketed liquid crystalline polymers: from molecular design to polymer light-emitting diode applications. Polym. Chem. 2012, 3(8), 1947−1957  doi: 10.1039/c2py20078c

    39. [39]

      Shi, L. Y.; Hsieh, I. F.; Zhou, Y.; Fan, X. H.; Shen, Z. H. Thermoreversible order-order transition of a diblock copolymer induced by the unusual coil-rod conformational change of one block. Macromolecules 2012, 45(24), 9719−9726  doi: 10.1021/ma302048y

    40. [40]

      Chen, S.; Jie, C. K.; Xie, H.; Zhang, H. L. Influence of alkoxy tail length on the self-organization of hairy-rod polymers based on mesogen-jacketed liquid crystalline polymers. J. Polym. Sci., Part A: Polym. Chem. 2012, 50(19), 3923−3935  doi: 10.1002/pola.v50.19

    41. [41]

      Wu, H.; Zhang, L.; Xu, Y.; Shen, Z.; Fan, X. H.; Zhou, Q. F. Amphiphilic mesogen-jacketed liquid crystalline polymers: Design, synthesis, and self-assembly behaviors. J. Polym. Sci., Part A: Polym. Chem. 2012, 50(9), 1792−1800  doi: 10.1002/pola.v50.9

    42. [42]

      Tian, H. J.; Qu, W.; Zhu, Y. F.; Shen, Z.; Fan, X. H. Synthesis and properties of a rod-g-rod bottlebrush with a semirigid mesogen-jacketed polymer as the side chain. Polym. Chem. 2014, 5(17), 4948−4956  doi: 10.1039/C4PY00033A

    43. [43]

      Zhu, Y. F.; Tian, H. J.; Wu, H. W.; Shen, Z.; Fan, X. H., Zhou Q. F. Ordered nanostructures at two different length scales mediated by temperature: a triphenylene-containing mesogen- jacketed liquid crystalline polymer with a long spacer. J. Polym. Sci., Part A: Polym. Chem. 2014, 52(3), 295−304  doi: 10.1002/pola.27003

    44. [44]

      Yu, Z. Q.; Lam, J. W. Y.; Zhao, K.; Chen, E. Q.; Tang, B. Z. Mesogen jacketed liquid crystalline polyacetylene containing triphenylene discogen: synthesis and phase structure. Polym. Chem. 2013, 4(4), 996−1005  doi: 10.1039/C2PY20535A

    45. [45]

      Ban, J.; Chen, S.; Li, C.; Zhang, H. L. Influence of the spacer and molecular weight on the phase behavior of side-chain liquid crystalline polymers containing triphenylene discotic mesogen units as side groups. Polym. Chem. 2014, 5(22), 6558−6568  doi: 10.1039/C4PY00788C

    46. [46]

      Li, P.; Chen, S.; Luo, H.; Zhang, H. L. Influence of main chain on the phase behaviors of side-chain liquid-crystalline polymers with triphenylene mesogens of long alkyl tail substituents. J. Polym. Sci., Part A: Polym. Chem. 2017, 55(4), 754−766  doi: 10.1002/pola.28428

    47. [47]

      Chen, X.; Chen, L.; Yao, K.; Chen, Y. W. Self-assembly of diblock polythiophenes with discotic liquid crystals on side chains for the formation of a highly ordered nanowire morphology. ACS Appl. Mater. Interfaces 2013, 5(17), 8321−8328  doi: 10.1021/am402031v

  • 加载中
    1. [1]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    2. [2]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    3. [3]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    7. [7]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    17. [17]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    18. [18]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    19. [19]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return