Bioinspired Adaptive Gel Materials with Synergistic Heterostructures
- Corresponding author: Ming-Jie Liu, liumj@buaa.edu.cn
Citation: Zi-Guang Zhao, Yi-Chao Xu, Ruo-Chen Fang, Ming-Jie Liu. Bioinspired Adaptive Gel Materials with Synergistic Heterostructures[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 683-696. doi: 10.1007/s10118-018-2105-z
Zhao Z., Fang R., Rong Q., Liu M.. Bioinspired nanocomposite hydrogels with highly ordered structures[J]. Adv. Mater., 2017,29(45). doi: 10.1002/adma.201703045
Slaughter B. V., Khurshid S. S., Fisher O. Z., Khademhosseini A., Peppas N. A.. Hydrogels in regenerative medicine[J]. Adv. Mater., 2009,21(32):3307-3329.
Liu M., Wang S., Jiang L.. Nature-inspired superwettability systems[J]. Nat. Rev. Mater., 2017,217036. doi: 10.1038/natrevmats.2017.36
Chen L., Yin Y., Liu Y., Lin L., Liu M.. Design and fabrication of functional hydrogels through interfacial engineering[J]. Chinese J. Polym. Sci., 2017,35(10):1181-1193. doi: 10.1007/s10118-017-1995-5
Lee K. Y., Mooney D. J.. Hydrogels for tissue engineering[J]. Chem. Rev., 2001,101(7):1869-1880. doi: 10.1021/cr000108x
Taylor D. L., Panhuis M.. Self-healing hydrogels[J]. Adv. Mater., 2016,28(41):9060-9093. doi: 10.1002/adma.201601613
Yuk H., Lin S., Ma C., Takaffoli M., Fang N. X., Zhao X.. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nat. Commun., 2017,8. doi: 10.1038/ncomms14230
Lee B. P., Konst S.. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry[J]. Adv. Mater., 2014,26(21):3415-3419. doi: 10.1002/adma.v26.21
Shin M. K., Spinks G. M., Shin S. R., Kim S. I., Kim S. J.. Nanocomposite hydrogel with high toughness for bioactuators[J]. Adv. Mater., 2009,21(17):1712-1715. doi: 10.1002/adma.v21:17
Shin S. R., Jung S. M., Zalabany M., Kim K., Zorlutuna P., Kim S. B., Nikkhah M., Khabiry M., Azize M., Kong J., Wan K. T., Palacios T., Dokmeci M. R., Bae H., Tang X., Khademhosseini A.. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators[J]. ACS Nano, 2013,7(3):2369-2380. doi: 10.1021/nn305559j
Culver H. R., Clegg J. R., Peppas N. A.. Analyte-responsive hydrogels:intelligent materials for biosensing and drug delivery[J]. Acc. Chem. Res., 2017,50(2):170-178. doi: 10.1021/acs.accounts.6b00533
Xing J. F., Zheng M. L., Duan X. M.. Two-photon polymerization microfabrication of hydrogels:an advanced 3D printing technology for tissue engineering and drug delivery[J]. Chem. Soc. Rev., 2015,44:5031-5039. doi: 10.1039/C5CS00278H
Wang P., Sun J., Lou Z., Fan F., Hu K., Sun Y., Gu N.. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel[J]. Adv. Mater., 2016,28(48):10801-10808. doi: 10.1002/adma.201603632
Liu J., Tan C. S., Yu Z., Lan Y., Abell C., Scherman O. A.. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Adv. Mater., 2017,29(10). doi: 10.1002/adma.201604951
Liu Z., Calvert P.. Multilayer hydrogels as muscle-like actuators[J]. Adv. Mater., 2000,12(4):288-291. doi: 10.1002/(ISSN)1521-4095
VanBemmelen J. M.. Der hydrogel und das kristallinische hydrat des kupferoxydes[J]. Z. Anorg. Chem., 1894,5:466-483. doi: 10.1002/(ISSN)1521-3749
Wichterle O., Lím D.. Hydrophilic gels for biological use[J]. Nature, 1960,185:117-118. doi: 10.1038/185117a0
Jokl J., Kopeček J., Lím D.. Mechanism of three-dimensional polymerization of the system methyl methacrylate-glycol dimethacrylate.Ⅰ. Determination of the structure of the threedimensional product[J]. J. Polym. Sci. A1 Polym. Chem., 1968,6(11):3041-3048. doi: 10.1002/pol.1968.150061108
Refojo M. F., Yasuda H.. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate[J]. J. Appl. Polym. Sci., 1965,9(7):2425-2435. doi: 10.1002/app.1965.070090707
Hicks G. P., Updike S. J.. The preparation and characterization of lyophilized polyacrylamide enzyme gels for chemical analysis[J]. Anal. Chem., 1966,38(6):726-730. doi: 10.1021/ac60238a014
Freeman A., Aharonowitz Y.. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels:antibiotic production by immobilized Streptomyces clavuligerus cells[J]. Biotechnol. Bioeng., 1981,23(12):2747-2759. doi: 10.1002/(ISSN)1097-0290
Otake K., Inomata H., Konno M., Saito S.. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels[J]. Macromolecules, 1990,23(1):283-289. doi: 10.1021/ma00203a049
Inomata H., Goto S., Saito S.. Phase transition of N-substituted acrylamide gels[J]. Macromolecules, 1990,23(22):4887-4888. doi: 10.1021/ma00224a023
Dong L. C., Qi Y., Hoffman A. S.. Controlled release of amylase from a thermal and pH-sensitive, macroporous hydrogel[J]. J. Control. Release, 1992,19(1):171-177.
Zhao X.. Multi-scale multi-mechanism design of tough hydrogels:building dissipation into stretchy networks[J]. Soft Matter, 2014,10:672-687. doi: 10.1039/C3SM52272E
Haraguchi K., Takehisa T., Ebato M.. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels[J]. Biomacromolecules, 2006,7(11):3267-3275. doi: 10.1021/bm060549b
Haraguchi K., Li H. J.. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels[J]. Angew. Chem. Int. Ed., 2005,44(40):6500-6504. doi: 10.1002/(ISSN)1521-3773
Gong J. P., Katsuyama Y., Kurokawa T., Osada Y.. Doublenetwork hydrogels with extremely high mechanical strength[J]. Adv. Mater., 2003,15(14):1155-1158. doi: 10.1002/adma.200304907
Sun J. Y., Zhao X., Illeperuma W. R., Chaudhuri O., Oh K. H., Mooney D. J., Vlassak J. J., Suo Z.. Highly stretchable and tough hydrogels[J]. Nature, 2012,489:133-136. doi: 10.1038/nature11409
Rauner N., Meuris M., Zoric M., Tiller J. C.. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics[J]. Nature, 2017,543:407-410. doi: 10.1038/nature21392
Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kinbara K., Aida T.. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010,463:339-343. doi: 10.1038/nature08693
Kamata H., Akagi Y., Kayasuga-Kariya Y., Chung U. I., Sakai T.. "Nonswellable" hydrogel without mechanical hysteresis[J]. Science, 2014,343(6173):873-875. doi: 10.1126/science.1247811
Liu M., Ishida Y., Ebina Y., Sasaki T., Hikima T., Takata M., Aida T.. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets[J]. Nature, 2015,517:68-72. doi: 10.1038/nature14060
Kim H. N., Jiao A., Hwang N. S., Kim M. S., Kang D. H., Kim D. H., Suh K. Y.. Nanotopography-guided tissue engineering and regenerative medicine[J]. Adv. Drug. Delivery Rev., 2013,65(4):536-558. doi: 10.1016/j.addr.2012.07.014
Liu M., Jiang L.. Dialectics of nature in materials science:binary cooperative complementary materials[J]. Sci. China Mater., 2016,59(4):239-246. doi: 10.1007/s40843-016-5051-6
Oliva N., Conde J., Wang K., Artzi N.. Designing hydrogels for on-demand therapy[J]. Acc. Chem. Res., 2017,50(4):669-679. doi: 10.1021/acs.accounts.6b00536
Dou X. Q., Feng C. L.. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture[J]. Adv. Mater., 2017,29(16)1604062. doi: 10.1002/adma.201604062
Wegst U. G., Bai H., Saiz E., Tomsia A. P., Ritchie R. O.. Bioinspired structural materials[J]. Nat. Mater., 2015,14:23-36. doi: 10.1038/nmat4089
Motokawa T.. Effects of ionic environment on viscosity of Triton-extracted catch connective tissue of a sea cucumber body wall[J]. Comp. Biochem. Physiol. Part B, 1994,109(4):613-622. doi: 10.1016/0305-0491(94)90124-4
Thurmond F. A., Trotter J. A.. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis[J]. J. Exp. Biol., 1996,199:1817-1828.
Szulgit G. K., Shadwick R. E.. Dynamic mechanical characterization of a mutable collagenous tissue:response of sea cucumber dermis to cell lysis and dermal extracts[J]. J. Exp. Biol., 2000,203(10):1539-1550.
Capadona J. R., Shanmuganathan K., Tyler D. J., Rowan S. J., Weder C.. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis[J]. Science, 2008,319(5868):1370-1374. doi: 10.1126/science.1153307
Mo J., Prévost S. F., Blowes L. M., Egertová M., Terrill N. J., Wang W., Elphick M. R., Gupta H. S.. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale[J]. P. Natl. Acad. Sci. USA, 2016,113(42):E6362-E6371. doi: 10.1073/pnas.1609341113
Johnson M. A., Polgar J., Weightman D., Appleton D.. Data on the distribution of fibre types in thirty-six human muscles:an autopsy study[J]. J. Neurol. Sci., 1973,18(1):111-129. doi: 10.1016/0022-510X(73)90023-3
Tiidus, P. M., "Skeletal muscle damage and repair", Human Kinetics Press, Champaign, IL USA, 2008, p. 37
Wakelam M. J.. The fusion of myoblasts[J]. Biochem. J., 1985,228:1-12. doi: 10.1042/bj2280001
Wigmore P. M., Dunglison G. F.. The generation of fiber diversity during myogenesis[J]. Int. J. Dev. Biol., 1998,42(2):117-125.
Jana S., Levengood S. K., Zhang M.. Anisotropic materials for skeletal-muscle-tissue engineering[J]. Adv. Mater., 2016,28(48):10588-10612. doi: 10.1002/adma.201600240
Kerin A. J., Wisnom M. R., Adams M. A.. The compressive strength of articular cartilage[J]. Proc. Inst. Mech. Eng. Part H, 1998,212(4):273-280. doi: 10.1243/0954411981534051
Tepic S., Macirowski T., Mann R. W.. Mechanical properties of articular cartilage elucidated by osmotic loading and ultrasound[J]. Proc. Natl. Acad. Sci. USA, 1983,80(11):3331-3333. doi: 10.1073/pnas.80.11.3331
Fratzl P., Weinkamer R.. Nature's hierarchical materials[J]. Prog. Mater. Sci., 2007,52(8):1263-1334. doi: 10.1016/j.pmatsci.2007.06.001
Simha N. K., Carlson C. S., Lewis J. L.. Evaluation of fracture toughness of cartilage by micropenetration[J]. J. Mater. Sci. Mater. Med., 2004,15(5):631-639. doi: 10.1023/B:JMSM.0000026104.30607.c7
Ker R. F.. The design of soft collagenous load-bearing tissues[J]. J. Exp. Biol., 1999,202(23):3315-3324.
Bellucci G., Seedhom B. B.. Mechanical behaviour of articular cartilage under tensile cyclic load[J]. Rheumatology, 2001,40(12):1337-1345. doi: 10.1093/rheumatology/40.12.1337
Salt R. W.. Survival of frozen fat body cells in an insect[J]. Nature, 1959,184:1426-1426.
Thomashow M. F.. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999,50:571-599. doi: 10.1146/annurev.arplant.50.1.571
Moellering E. R., Muthan B., Benning C.. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane[J]. Science, 2010,330(6001):226-228. doi: 10.1126/science.1191803
Takahashi D., Imai H., Kawamura Y., Uemura M.. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance[J]. Cryobiology, 2016,72(2):123-134. doi: 10.1016/j.cryobiol.2016.02.003
Martz F., Sutinen M. L., Kiviniemi S., Palta J. P.. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimatio[J]. Tree Physiol., 2006,26(6):783-790. doi: 10.1093/treephys/26.6.783
Gao H., Zhao Z., Cai Y., Zhou J., Hua W., Chen L., Wang L., Zhang J., Han D., Liu M., Jiang L.. Adaptive and freezetolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range[J]. Nat. Commun., 2017,8. doi: 10.1038/ncomms15911
Rong Q., Lei W., Chen L., Yin Y., Zhou J., Liu M.. Antifreezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angew. Chem. Int. Ed., 2017,129(45):14347-14351. doi: 10.1002/ange.201708614
Shi S., Peng X., Liu T., Chen Y. N., He C., Wang H.. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties[J]. Polymer, 2017,111(24):168-176.
Shin J., Lee J. S., Lee C., Park H. J., Yang K., Jin Y., Ryu J. H., Hong K. S., Moon S. H., Chung H. M., Yang H. S., Um S. H., Oh J. W., Kim D. I., Lee H., Cho S. W.. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy[J]. Adv. Funct. Mater., 2015,25(25):3814-3824. doi: 10.1002/adfm.v25.25
Liu Y., Meng H., Konst S., Sarmiento R., Rajachar R., Lee B. P.. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity[J]. ACS Appl. Mater. Interfaces, 2014,6(19):16982-16992. doi: 10.1021/am504566v
Lee Y. B., Shin Y. M., Kim E. M., Lim J., Lee J. Y., Shin H.. Facile cell sheet harvest and translocation mediated by a thermally expandable hydrogel with controlled cell adhesion[J]. Adv. Healthc. Mater., 2016,5(18):2320-2324. doi: 10.1002/adhm.v5.18
Thornton D. J., Sheehan J. K.. From mucins to mucus:toward a more coherent understanding of this essential barrier[J]. Proc. Am. Thorac. Soc., 2004,1(1):54-61. doi: 10.1513/pats.2306016
Weis K.. The nuclear pore complex:oily spaghetti or gummy bear?[J]. Cell, 2007,130(3):405-407. doi: 10.1016/j.cell.2007.07.029
Yao X., Chen L., Ju J., Li C., Tian Y., Jiang L., Liu M.. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification[J]. Adv. Mater., 2016,28(34):7383-7389. doi: 10.1002/adma.201601568
Chen L., Yao X., Gu Z., Zheng K., Zhao C., Lei W., Rong Q., Lin L., Wang J., Jiang L., Liu M.. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release[J]. Chem. Sci., 2017,8:2010-2016. doi: 10.1039/C6SC04634G
Chen H., Yang F. Y., Chen Q., Zheng J.. A novel design of multi-mechanoresponsive and mechanically strong hydrogels[J]. Adv. Mater., 2017,29(21). doi: 10.1002/adma.201606900
Bilici C., Can V., Nçchel U., Behl M., Lendlein A., Okay O.. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength[J]. Macromolecules, 2016,49(19):7442-7449. doi: 10.1021/acs.macromol.6b01539
Luo R. C., Wu J., Dinh N. D., Chen C. H.. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion[J]. Adv. Funct. Mater., 2015,25(47):7272-7279. doi: 10.1002/adfm.v25.47
Wang W., Zhang Y. Y., Liu W. G.. Bioinspired fabrication of high strength hydrogels from non-covalent interactions[J]. Prog. Polym. Sci., 2017,71:1-25. doi: 10.1016/j.progpolymsci.2017.04.001
Dai X. Y., Zhang Y. Y., Gao L. N., Bai T., Wang W., Cui Y. L., Liu W. G.. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel[J]. Adv. Mater., 2015,27(23):3566-3571. doi: 10.1002/adma.v27.23
Lu C. H., Guo W., Hu Y., Qi X. J., Willner I.. Multitriggered shape-memory acrylamide-DNA hydrogels[J]. J. Am. Chem. Soc., 2015,137(50):15723-15731. doi: 10.1021/jacs.5b06510
Zhao Z., Zhang K., Liu Y., Zhou J., Liu M.. Highly stretchable, shape memory organohydrogels using phasetransition microinclusions[J]. Adv. Mater., 2017,29(33)1701695. doi: 10.1002/adma.v29.33
Zhao Z., Liu Y., Zhang K., Zhuo S., Fang R., Zhang J., Jiang L., Liu M.. Biphasic synergistic gel materials with switchable mechanics and self-healing capacity[J]. Angew. Chem. Int. Ed., 2017,129(43):13649-13654. doi: 10.1002/ange.201707239
Kim Y. S., Liu M., Ishida Y., Ebina Y., Osada M., Sasaki T., Hikima T., Takata M., Aida T.. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel[J]. Nat. Mater., 2015,14:1002-1007. doi: 10.1038/nmat4363
Liu M., Ishida Y., Ebina Y., Sasaki T., Aida T.. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers[J]. Nat. Commun., 2013,42029. doi: 10.1038/ncomms3029
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Zikang Hu , Hengjie Zhang , Zhengqiu Li , Tianbao Zhao , Zhipeng Gu , Qijuan Yuan , Baoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167