Citation: Huanmin Li, Xianwei Sui, Xu-Ming Xie. Correlation of Morphology Evolution with Superior Mechanical Properties in PA6/PS/PP/SEBS Blends Compatibilized by Multi-phase Compatibilizers[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 848-858. doi: 10.1007/s10118-018-2102-2 shu

Correlation of Morphology Evolution with Superior Mechanical Properties in PA6/PS/PP/SEBS Blends Compatibilized by Multi-phase Compatibilizers

  • Corresponding author: Xu-Ming Xie, xxm-dce@mail.tsinghua.edu.cn
  • Received Date: 13 September 2017
    Revised Date: 11 December 2017
    Accepted Date: 11 December 2017
    Available Online: 13 July 2018

  • In this study, the maleic anhydride (MAH) and styrene (St) dual monomers grafted polypropylene (PP) and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS), i.e. PP-g-(MAH-co-St) and SEBS-g-(MAH-co-St) are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS (70/10/10/10) model quaternary blends. Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St) in the dispersed domains (about 2 μm) of the PA6/PS/PP-g-(MAH-co-St)/SEBS (70/10/10/10) quaternary blend. In contrast, inside the dispersed domains (about 1 μm) of the PA6/PS/PP/SEBS-g-(MAH-co-St) (70/10/10/10) quaternary blend, the soft SEBS-g-(MAH-co-St) encapsulates both the hard PS and PP phases and separates them. With increasing the content of the compatibilizers equally, the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St)) (70/10/10/10) quaternary blends evolves from the soft (SEBS+SEBS-g-(MAH-co-St)) encapsulating PS and partially encapsulating PP (about 1 μm), then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St) and then separated by PP-g-(MAH-co-St) inside the smaller domains (about 0.6 μm). This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers. The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain, which results in the further improved mechanical properties. Compared to the uncompatibilized blend, the blend with both 10 wt% PP-g-(MAH-co-St) and 10 wt% SEBS-g-(MAH-co-St) has the best mechanical properties with the stress at break, strain at break and impact failure energy improved significantly by 97%, 71% and 261%, respectively. There is a strong correlation between the structure and property in the blends.
  • 加载中
    1. [1]

      Koning, C.; van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23(4), 707-757.  doi: 10.1016/S0079-6700(97)00054-3

    2. [2]

      Paul, D. R.; Bucknall, C. B. "Polymer blends", Wiley, New York, 2000.

    3. [3]

      Robeson, L. M. "Polymer blends: a comprehensive review", Carl Hanser Verlag, 2007.

    4. [4]

      Adedeji, A.; Lyu, S.; Macosko, C. W. Block copolymers in homopolymer blends:  interface vs micelles. Macromolecules 2001, 34(25), 8663-8668.  doi: 10.1021/ma001944b

    5. [5]

      Marić, M.; Macosko, C. W. Block copolymer compatibilizers for polystyrene/poly(dimethylsiloxane) blends. J. Polym. Sci., Part B: Polym. Phys. 2002, 40(4), 346-357.  doi: 10.1002/(ISSN)1099-0488

    6. [6]

      Harrats, C.; Fayt, R.; Jérôme, R.; Blacher, S. Stabilization of a cocontinuous phase morphology by a tapered diblock or triblock copolymer in polystyrene-rich low-density polyethylene/polystyrene blends. J. Polym. Sci., Part B: Polym. Phys. 2003, 41(2), 202-216.  doi: 10.1002/polb.10370

    7. [7]

      Guo, R. H.; Li, J. L.; Yan, L. T.; Xie, X. M. Role of compatibilizer in multicomponent polymer mixtures under shear flow. Soft Matter 2013, 9(1), 255-260.  doi: 10.1039/C2SM26342D

    8. [8]

      Bhadane, P. A.; Tsou, A. H.; Cheng, J.; Ellul, M. D.; Favis, B. D. Enhancement in interfacial reactive compatibilization by chain mobility. Polymer 2014, 55(16), 3905-3914.  doi: 10.1016/j.polymer.2014.05.023

    9. [9]

      Gao, C.; Zhang, S.; Li, X.; Zhu, S.; Jiang, Z. Synthesis of poly(ether ether ketone)-block-polyimide copolymer and its compatibilization for poly(ether ether ketone)/thermoplastic polyimide blends. Polymer 2014, 55(1), 119-125.  doi: 10.1016/j.polymer.2013.11.022

    10. [10]

      Xu, Y.; Thurber, C. M.; Macosko, C. W.; Lodge, T.P.; Hillmyer, M.A. Poly(methyl methacrylate)-block-polyethylene-block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends. Ind. Eng. Chem. Res. 2014, 53(12), 4718-4725.  doi: 10.1021/ie4043196

    11. [11]

      Parpaite, T.; Otazaghine, B.; Caro, A. S.; Taguet, A.; Sonnier, R.; Lopez-Cuesta, J. M. Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends. Polymer 2016, 90, 34-44.  doi: 10.1016/j.polymer.2016.02.044

    12. [12]

      Koriyama, H.; Oyama, H. T.; Ougizawa, T.; Inoue, T.; Weber, M.; Koch, E. Studies on the reactive polysulfone-polyamide interface: interfacial thickness and adhesion. Polymer 1999, 40(23), 6381-6393.  doi: 10.1016/S0032-3861(98)00856-8

    13. [13]

      Zhang, J.; Lodge, T. P.; Macosko, C. W. Interfacial morphology development during PS/PMMA reactive coupling. Macromolecules 2005, 38(15), 6586-6591.  doi: 10.1021/ma050530l

    14. [14]

      Harada, M.; Iida, K.; Okamoto, K.; Hayashi, H.; Hirano, K. Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents. Polym. Eng. Sci. 2008, 48(7), 1359-1368.  doi: 10.1002/(ISSN)1548-2634

    15. [15]

      Liu, G. C.; He, Y. S.; Zeng, J. B.; Li, Q. T.; Wang, Y. Z. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules, 2014, 15(11), 4260-4271.  doi: 10.1021/bm5012739

    16. [16]

      Li, X.; Kang, H.; Shen, J.; Zhang, L.; Nishi, T.; Ito, K.; Zhao, C.; Coates, P. Highly toughened polylactide with novel sliding graft copolymer by in situ reactive compatibilization, crosslinking and chain extension. Polymer 2014, 55(16), 4313-4323.  doi: 10.1016/j.polymer.2014.06.045

    17. [17]

      Wang, H.; Dong, W.; Li, Y. Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Lett. 2015, 4(12), 1398-1403.  doi: 10.1021/acsmacrolett.5b00763

    18. [18]

      Thurber, C. M.; Xu, Y.; Myers, J. C.; Lodge, T. P.; Macosko, C. W. Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst. ACS Macro Lett. 2015, 4(1), 30-33.  doi: 10.1021/mz500770y

    19. [19]

      Ojijo, V.; Ray, S. S. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 2015, 80, 1-17.  doi: 10.1016/j.polymer.2015.10.038

    20. [20]

      Todd, A. D.; McEneany, R. J.; Topolkaraev, V. A.; Macosko, C. W.; Hillmyer, M. A. Reactive compatibilization of poly(ethylene terephthalate) and high-density polyethylene using amino-telechelic polyethylene. Macromolecules 2016, 49(23), 8988-8994.  doi: 10.1021/acs.macromol.6b02080

    21. [21]

      Li, J. P.; Cassagnau, P.; Da Cruz-Boisson, F.; Mélis, F.; Alcouffe, P.; Bounor-Legaré, V. Efficient hydrosilylation reaction in polymer blending: an original approach to structure PA12/PDMS blends at multiscales. Polymer 2017, 112, 10-25.  doi: 10.1016/j.polymer.2017.01.039

    22. [22]

      Zolali, A. M.; Favis, B. D. Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface. Polymer 2017, 114, 277-288.  doi: 10.1016/j.polymer.2017.02.093

    23. [23]

      Dang, L.; Nai, X. Y.; Liu, X.; Zhu, D. H.; Dong, Y. P.; Li, W. Effects of different compatibilizing agents on the interfacial adhesion properties of polypropylene/magnesium oxysulfate whisker composites. Chinese J. Polym. Sci. 2017, 35(9), 1143-1155.  doi: 10.1007/s10118-017-1953-2

    24. [24]

      Chanda, M.; Roy, S. K. "Plastics fabrication and recycling", Taylor and Francis, 2009.

    25. [25]

      Xanthos, M. Recycling of the #5 Polymer. Science 2012, 337(6095), 700-702.  doi: 10.1126/science.1221806

    26. [26]

      Eagan, J. M.; Xu, J.; Di Girolamo, R.; Thurber, C. M.; Macosko, C. W.; LaPointe, A. M.; Bates, F. S.; Coates, G. W. Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers. Science 2017, 355(6327), 814-816.  doi: 10.1126/science.aah5744

    27. [27]

      Debolt, M. A.; Robertson, R. E. Impact strength and elongation-to-break of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym. Eng. Sci. 2004, 44(9), 1800-1809.  doi: 10.1002/(ISSN)1548-2634

    28. [28]

      DeBolt, M. A.; Robertson, R. E. Morphology of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym. Eng. Sci. 2006, 46(4), 385-398.  doi: 10.1002/(ISSN)1548-2634

    29. [29]

      Omonov, T. S.; Harrats, C.; Groeninckx, G. Co-continuous and encapsulated three phase morphologies in uncompatibilized and reactively compatibilized polyamide 6/polypropylene/polystyrene ternary blends using two reactive precursors. Polymer 2005, 46(26), 12322-12336.  doi: 10.1016/j.polymer.2005.10.022

    30. [30]

      Guo, H. F.; Gvozdic, N. V.; Meier, D. J. Prediction and manipulation of the phase morphologies of multiphase polymer blends: II. quaternary systems. Polymer 1997, 38(19), 4915-4923.

    31. [31]

      Virgilio, N.; Desjardins, P.; L’Espérance, G.; Favis, B. D. In situ measure of interfacial tensions in ternary and quaternary immiscible polymer blends demonstrating partial wetting. Macromolecules 2009, 42(19), 7518-7529.  doi: 10.1021/ma9005507

    32. [32]

      Virgilio, N.; Favis, B. D. Self-assembly of Janus composite droplets at the interface in quaternary immiscible polymer blends. Macromolecules 2011, 44(15), 5850-5856.  doi: 10.1021/ma200647t

    33. [33]

      Virgilio, N.; Sarazin, P.; Favis, B. D. Towards ultraporous poly(L-lactide) scaffolds from quaternary immiscible polymer blends. Biomaterials 2010, 31(22), 5719-5728.  doi: 10.1016/j.biomaterials.2010.03.071

    34. [34]

      Ravati, S.; Favis, B. D. Low percolation threshold conductive device derived from a five-component polymer blend. Polymer 2010, 51(16), 3669-3684.  doi: 10.1016/j.polymer.2010.06.015

    35. [35]

      Wang, J.; Reyna-Valencia, A.; Chaigneau, R.; Favis, B. D. Controlling the hierarchical structuring of conductive PEBA in ternary and quaternary blends. Ind. Eng. Chem. Res. 2016, 55(50), 12848-12859.  doi: 10.1021/acs.iecr.6b03700

    36. [36]

      Wang, D.; Xie, X. M. Novel strategy for ternary polymer blend compatibilization. Polymer 2006, 47(23), 7859-7863.  doi: 10.1016/j.polymer.2006.09.026

    37. [37]

      Wang, D.; Li, Y.; Xie, X. M.; Guo, B. H. Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 2011, 52(1), 191-200.  doi: 10.1016/j.polymer.2010.11.019

    38. [38]

      Li, Y.; Wang, D.; Zhang, J. M.; Xie, X. M. Compatibilization and toughening of immiscible ternary blends of polyamide 6, polypropylene (or a propylene-ethylene copolymer), and polystyrene. J. Appl. Polym. Sci. 2011, 119(3), 1652-1658.  doi: 10.1002/app.v119:3

    39. [39]

      Li, H.; Xie, X. M. Morphology development and superior mechanical properties of PP/PA6/SEBS ternary blends compatibilized by using a highly efficient multi-phase compatibilizer. Polymer 2017, 108, 1-10.  doi: 10.1016/j.polymer.2016.11.044

    40. [40]

      Li, H.; Sui, X.; Xie, X. M. High-strength and super-tough PA6/PS/PP/SEBS quaternary blends compatibilized by using a highly effective multi-phase compatibilizer: toward efficient recycling of waste plastics. Polymer 2017, 123, 240-246.  doi: 10.1016/j.polymer.2017.07.024

    41. [41]

      Li, Y.; Xie, X. M. Studies on mechanism of free radical melt-grafting of multi-monomer system for maleic anhydride/styrene onto polypropylene. Chem. J. Chinese U. 2000, 21(4), 637-642.

    42. [42]

      Xie, X. M.; Chen, N. H.; Guo, B. H.; Li, S. Study of multi-monomer melt-grafting onto polypropylene in an extruder. Polym. Int. 2000, 49(12), 1677-1683.  doi: 10.1002/(ISSN)1097-0126

    43. [43]

      Li, Y.; Xie, X. M.; Guo, B. H. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 2001, 42(8), 3419-3425.  doi: 10.1016/S0032-3861(00)00767-9

    44. [44]

      Xie, X.; Li, Y.; Zhang, J.; Yang, X. Study of melt free radical grafting of maleic anhydride and styrene onto polypropylene and its properties. Acta Polymerica Sinica (in Chinese) 2002, 1, 7-12.

    45. [45]

      Hobbs, S. Y.; Dekkers, M. E. J.; Watkins, V. H. Effect of interfacial forces on polymer blend morphologies. Polymer 1988, 29(9), 1598-1602.  doi: 10.1016/0032-3861(88)90269-8

    46. [46]

      Wu, S. "Polymer interface and adhesion", Marcel Dekker, New York, 1982.

  • 加载中
    1. [1]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    2. [2]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    7. [7]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    10. [10]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    11. [11]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    14. [14]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    15. [15]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    18. [18]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    19. [19]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(0)
  • Abstract views(674)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return