Citation: Kamal I. Aly, Amr H. Moustafa, Essam K. Ahmed, Hany M. Abd El-lateef, Mohamed Gamal Mohamed, Sahar M. Mohamed. New Polymer Syntheses Part 60: A Facile Synthetic Route to Polyamides Based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 835-847. doi: 10.1007/s10118-018-2101-3 shu

New Polymer Syntheses Part 60: A Facile Synthetic Route to Polyamides Based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior

  • Corresponding author: Amr H. Moustafa, amr_hassanegypt@ymail.com
  • Received Date: 17 September 2017
    Accepted Date: 9 December 2017
    Available Online: 25 April 2018

  • Polyamides containing thieno[2,3-b]thiophene moiety were prepared via a simple polycondensation reaction of the diaminothieno[2,3-b]thiophene monomer 1a with different kinds of diacid chlorides (including oxalyl, adipoyl, sebacoyl, isophthaloyl, terephthaloyl, 4,4′-azodibenzoyl, 3,3′-azodibenzoyl, p-phenylene diacryloyl) in the presence of LiCl and NMP as a solvent through low-temperature solution polycondensation. The chemical structures of model compound and synthesized polyamides were confirmed by FTIR, nuclear magnetic resonance spectroscopy (including 1H-NMR and 13C-NMR) and elemental analysis. In addition, the thermal stability, crystallinity structure and surface morphology of synthesized polyamides were characterized via thermogravametric analysis (TGA), wide-angle X-ray diffraction analysis (WAXD) and scanning electron microscopy (SEM). Also, the corrosion inhibition behavior of selected examples of polyamides was investigated; the inhibitive effect of the investigated polymers for carbon steel in 1.0 mol·L−1 HCl was studied using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) methods. PDP results displayed that the polyamides containing thieno[2,3-b]thiophene moiety can be as mixed-type inhibitors. The inhibition efficiency (P, %) was found to be in the range from 67.13% to 96.01%. There is an increase in P by the synthesized polymers in comparison to the starting monomer. The adsorption of these polymers was found to obey Langmuir adsorption isotherm.
  • 加载中
    1. [1]

      Yang, H. H. " Aromatic high-strength fibers”, John Wiley & Sons, New York, 1989.

    2. [2]

      Liou, G. S.; Yen, H. J. " Polyimides”, in: K. Matyjaszewski, M. Moller (eds.), " Polymer science: a comprehensive reference”, Elsevier Science, Amsterdam, 2012, P. 497–535.

    3. [3]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: synthesis, physical properties and application. Prog. Polym. Sci. 2012, 37, 907-974.  doi: 10.1016/j.progpolymsci.2012.02.005

    4. [4]

      Hsiao, S. H.; Peng, S. C.; Kung, Y. R.; Leu, C. M.; Lee, T. M. Synthesis and electro-optical properties of aromatic polyamides and polyimides. Eur. Polym. J. 2015, 73, 50-60.  doi: 10.1016/j.eurpolymj.2015.10.004

    5. [5]

      Levchik, S. V.; Weil, E. D. Combustion and fire retardancy of aliphatic nylons. Polym. Int. 2000, 49, 1033-1073.  doi: 10.1002/(ISSN)1097-0126

    6. [6]

      Wang, Y. F.; Chen, T. M.; Li, Y. J.; Kitamura, M.; Sakurai, I.; Nakaya, T. Studies on syntheses and properties of novel polyamides containing phosphatidyl choline analogous moieties by interfacial polycondensation. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3065-3074.  doi: 10.1002/(ISSN)1099-0518

    7. [7]

      Ferrero, E.; Espeso, J. F.; de La Campa, J. G.; De Abajo, J.; Lozano, A. E. Synthesis and characterization of aromatic polyamides containing alkylphthalimido pendent groups. J. Polym. Sci. A: Polym. Chem. 2002, 40, 3711-3724.  doi: 10.1002/(ISSN)1099-0518

    8. [8]

      Chen, Y.; Wang, Q. Preparation, properties and characterization of halogen-free nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 2006, 91, 2003-2013.  doi: 10.1016/j.polymdegradstab.2006.02.006

    9. [9]

      Wang, Q.; Shi, W. Synthesis and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant system. Polym. Degrad. Stab. 2006, 91, 1289-1294.  doi: 10.1016/j.polymdegradstab.2005.09.001

    10. [10]

      Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and characterization of novel soluble triphenylamine-containing aromatic polyamides based on N,N′-bis (4-aminophenyl)- N,N′-diphenyl-1,4-phynylene diamine. J. polym. Sci., Part A: Polym. Chem. 2002, 40, 2810-2818.  doi: 10.1002/(ISSN)1099-0518

    11. [11]

      Chern, Y. T.; Wang, W. L. Synthesis and properties of new polyamides based on diamantine. Macromolecules 1995, 28, 5554-5560.  doi: 10.1021/ma00120a020

    12. [12]

      Liou, G. S.; Oishi, Y.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bibenzoic acid and aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 995-1000.  doi: 10.1002/pola.1991.080290706

    13. [13]

      Cimecioglu, A. L.; Weiss, R. A. Synthesis and properties of polyamides of 3,3’-dimethyl naphthidine and its model compounds. J. Polym. Sci. Part A.: Polym. Chem. 1992, 30, 1051-1060.  doi: 10.1002/pola.1992.080300610

    14. [14]

      Yang, C. P.; Lin, J. H. Preparation and properties of aromatic polyamides and polyimides derived from 3,3-bis [4-(4-amino phenoxy ) phenyl] phthalide. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 423-433.  doi: 10.1002/pola.1994.080320303

    15. [15]

      Jadhav, J. Y.; Preston, J.; Krigbaum, W. R. Aromatic rigid chain copolymers. 1. Synthesis, structure and solubility of phenyl-substituted para-linked aromatic random copolyamides. J. Polym. Sci. Part A: Polym. Chem. 1989, 27, 1175-1195.

    16. [16]

      Delaviz, Y.; Gungor, A.; MacGrath, J. E.; Gibson, H. W. Soluble phosphine oxide containing aromatic polyamides. Polymer 1993, 34, 210-213.  doi: 10.1016/0032-3861(93)90308-W

    17. [17]

      Takayangi, M.; Katoyse, T. N-Substituted Poly (p-Phenylene Terephthalamide). J. Polym. Sci. Part A: Polym. Chem. 1981, 19, 1133-1145.  doi: 10.1002/pol.1981.170190510

    18. [18]

      Itamura, S.; Yamada, M.; Tamura, S.; Matsumoto, T.; Kurosaki, T. Soluble polyimides with polyalicyclic structure. 1. Polyimides from bicyclo [2.2.2]oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides. Macromolecules 1993, 26, 3490-3493.

    19. [19]

      Bottino, F. A.; Pasquale, G. D.; Pollicino, A.; Scalia, L. Synthesis and characterization of new polyamides containing 6,6′ methylenediquinoline units. Polymer 1998, 39(20), 4949-4954.  doi: 10.1016/S0032-3861(98)00067-6

    20. [20]

      Morgan, P. " Condensation polymers by interfacial and solution method”, John Wiley & Sons, New York, 1965.

    21. [21]

      Morgan, P. W.; Kwolek, S. L. Polyamides from phenylenediamines and aliphatic diacids. Macromolecules 1975, 8(2), 104-111.  doi: 10.1021/ma60044a003

    22. [22]

      Aly, K. I.; Hussein, M. A. Synthesis, characterization and corrosion inhibitive properties of new thiazole based polyamides containing diarylidenecyclohexanone moiety. Chinese J. Polym. Sci. 2015, 33(1), 1-13.  doi: 10.1007/s10118-015-1569-3

    23. [23]

      Liou, G. S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bis (p-aminophenoxy) biphenyl or 2,2′-bis (p-aminophenoxy)-1,1′-binaphthyl and aromatic dicarboxylic acids. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2499-2506.  doi: 10.1002/pola.1993.080311010

    24. [24]

      Park, S. H.; Lee, J. W.; Suh, D. H.; Ju, S. Y. Synthesis and characteristics of novel polyamides having pendent N-phenyl imide groups. J. Macromol. Sci. A: Pure Appl. Chem. 2001, 38, 513-525.  doi: 10.1081/MA-100103364

    25. [25]

      Sarjadi, M. S.; Yi, H.; Iraqi, A.; Lidzey, D. G. Theinothiophene units properties on the carbazole-based polymers for organic solar cell devices. Malaysian J. Analyt. Sci. 2015, 19 (6), 1205-1217.

    26. [26]

      Diez, A. S.; Saidman, S.; Garay, R. O. Synthesis of a theinothiophene conjugated polymer. Molecules 2000, 5(3), 555-556.  doi: 10.3390/50300555

    27. [27]

      Aly, K. I.; Abdel Rahman, M. A.; Hussein, M. A. New polymer syntheses Part 53. Novel polyamides of diarylidenecycloalkanone containing azo groups in the polymer backbone: synthesis and characterization. Int. J. Polym. Mater. Polym. Biomater. 2010, 59, 553-569.

    28. [28]

      Chao, D.; He, L.; Berda, E. B.; Wang, S.; Jia, X.; Wang, C. Multifunction hyperbranched polyamide: synthesis and properties. Polymer 2013, 54, 3223-3229.  doi: 10.1016/j.polymer.2013.04.021

    29. [29]

      Faghihi, K. New polyamides based on bis (p-amidobenzoic acid)-p-phenylene diacrylic acid and hydantoin derivatives: synthesis and characterization. Turk. J. Chem. 2008, 32, 75-86.

    30. [30]

      Bair, T. I.; Morgan, P. W.; Killian, F. L. Poly (1,4-phenyleneterephthalamides). polymerization and novel liquid-crystalline solutions. Macromolecules 1977, 10(6), 1396-1400.

    31. [31]

      Vogel, A. I. " Vogel’s textbook of practical organic Chemistry”. London, Longman Green 1, 1967, p. 464.

    32. [32]

      Aly, K. I. New polymer syntheses XXVIII. Synthesis and thermal behavior of new organometallic polyketones and copolyketones based on diferrocenylidenecyclohexanone. J. Appl. Polym. Sci. 2004, 94, 1440-1448.  doi: 10.1002/(ISSN)1097-4628

    33. [33]

      Aly, K. I.; Kandeel, M. M. New Polymer Syntheses IV. Synthesis and characterization of new polyamides containing bis-benzthiazolyl sulphone units in the main chain. High perform. Polym. 1996, 8, 307-314.

    34. [34]

      El-Shafei, A. K.; Abdel-Ghany, H. A.; Sultan, A. A.; El-Saghier, A. M. M. Synthesis of thieno (2,3-b) thiophene and related structures. Phosphorus, Sulfur, Silicon Relat. Elem. 1992, 73, 15-25.  doi: 10.1080/10426509208034426

    35. [35]

      Comel, A.; Kirsch, G. Efficient one pot preparation of variously substituted thieno[2,3-b]thiophene. J. Heterocycl. Chem. 2001, 38, 1167-1171.  doi: 10.1002/jhet.v38:5

    36. [36]

      Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Polym. Chem. 1975, 13, 1373-1380.

    37. [37]

      Holmer, D. A.; Pickett, O. A.; Saunders, J. H. Melt polycondensation of 4,4′-diaminodiphenylmethane with aliphatic dibasic acids. J. Polym. Sci. A: Polym. Chem. 1972, 10, 1547-1552.  doi: 10.1002/pol.1972.150100524

    38. [38]

      Li, C. H.; Chang, T. C. Studies on thermotropic liquid crystalline polymers Part II. Synthesis and properties of poly (azomethine-ether). Eur. Polym. J. 1991, 27 (1), 35-39.

    39. [39]

      Yang, R. X.; Wang, T. T.; Deng, W. Q. Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer. Sci. Rep. 2015, doi:10.1038/srep10155.  doi: 10.1038/srep10155

    40. [40]

      Aly, K. I. New polymer syntheses VIII. Synthesis, characterization and morphology of new unsaturated copolyesters based on dibenzylidenecycloalkanones. Polym. Int. 1998, 47, 483-490.

    41. [41]

      Kim, S.; Pearce, E. M.; Kwei, T. K. Synthesis and degradation of cyano-containing aramids. Polym. Adv. Technol. 1990, 1, 49-73.  doi: 10.1002/pat.1990.220010108

    42. [42]

      El-Sayed, A. R.; Shaker, A. M.; Abd El-Lateef, H. M. Corrosion inhibition of tin, indium and tin-indium alloys by adenine or adenosine in hydrochloric acid solution. Corros. Sci. 2010, 52, 72-81.  doi: 10.1016/j.corsci.2009.08.047

    43. [43]

      Abd El-Lateef, H. M. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid Solutions. Corros. Sci. 2015, 92, 104-117.  doi: 10.1016/j.corsci.2014.11.040

    44. [44]

      Al-Sabagh, A. M.; Nasser, N. M.; El-Azabawy, O. E.; El-Tabey, A. E. Corrosion inhibition behavior of new synthesized nonionic surfactants based on amino acid on carbon steel in acid media. J. Mol. Liq. 2016, 219, 1078-1088.  doi: 10.1016/j.molliq.2016.03.048

    45. [45]

      Kosari, A.; Moayed, M. H.; Davoodi, A.; Parvizi, R.; Momeni, M.; Eshghi, H.; Moradi, H. Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci. 2014, 78, 138-150.  doi: 10.1016/j.corsci.2013.09.009

    46. [46]

      Yadav, D. K.; Quraishi, M. A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 2012, 51, 8194-8210.  doi: 10.1021/ie3002155

    47. [47]

      Morad, M. S. Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids. J. Appl. Electrochem. 2008, 38, 1509-1518.  doi: 10.1007/s10800-008-9595-2

    48. [48]

      Abd El-Lateef, H. M.; Abu-Dief, A. M.; El-Gendy, B. E. M. Investigation of adsorption and inhibition effects of some novel compounds towards mild steel in H2SO4 solution: Electrochemical and theoretical quantum studies. J. Electroanal. Chem. 2015, 758, 135-147.  doi: 10.1016/j.jelechem.2015.10.025

    49. [49]

      Abd El-Lateef, H. M.; Abu-Dief, A. M.; Abdel-Rahman, L. H.; Sañudo, E. C.; Aliaga-Alcalde, N. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 2015, 743, 120-133.  doi: 10.1016/j.jelechem.2015.02.023

    50. [50]

      Mazumder, M. A. J.; Nazal, M. K.; Faiz, M.; Ali, Sh. A. Midazolines containing single-, twin- and triple- tailed hydrophobes and hydrophilic pendants (CH2CH2NH)n as inhibitors of mild steel corrosion in CO2 -0.5 M NaCl. RSC Adv. 2016, 6, 12348-12362.  doi: 10.1039/c5ra21276f

    51. [51]

      Ansari, K. R.; Quraishi, M. A. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros. Sci. 2015, 95, 62-70.  doi: 10.1016/j.corsci.2015.02.010

    52. [52]

      Atta, A. M.; El-Azabawy, O. E.; Ismail, H. S.; Hegazy, M. A. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros. Sci. 2011, 53, 1680-1689.  doi: 10.1016/j.corsci.2011.01.019

    53. [53]

      Prabhu, R. A.; Venkatesha, T. V.; Shanbhag, A. V.; Kulkarni, G. M.; Kalkhambkar, R. G. Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution .Corros. sci. 2008, 50, 3356-3362.  doi: 10.1016/j.corsci.2008.09.009

    54. [54]

      Elayyachy, M.; El Idrissi, A.; Hammouti, B. New thio-compounds as corrosion inhibitor for steel in 1 M HCl. Corros. Sci. 2006, 48, 2470-2479.  doi: 10.1016/j.corsci.2005.09.016

    55. [55]

      Singh, A.; Lin, Y.; Obot, I. B.; Ebenso, E. E.; Ansari, K. R.; Quraishi, M. A. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor. Appl. Surf. Sci. 2015, 356, 341-347.

    56. [56]

      Roy, P.; Karfa, P.; Adhikar, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci. 2014, 88, 246-253.  doi: 10.1016/j.corsci.2014.07.039

    57. [57]

      Gopi, D.; Karthikeyana, P.; Kavithac, L.; Surendiran, M. Development of poly (3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium. Appl. Surf. Sci. 2015, 357,122-130.  doi: 10.1016/j.apsusc.2015.09.001

    58. [58]

      Abd El-Lateef, H. M.; Tantawy, A. H. Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media. RSC Adv. 2016, 6, 8681-8700.  doi: 10.1039/C5RA21626E

    59. [59]

      Abd El-Lateef, H. M.; Tantawy, A. H.; Abdelhamid, A. A. Novel quaternary ammonium- based cationic surfactants:Synthesis , surface activity and evalution as corrosion inhibitors for C1018 carbon steel in acidic chloride solution. J. Surfact. Deterg. 2017, 20, 735-753.  doi: 10.1007/s11743-017-1947-7

    60. [60]

      Abd El-Lateef, H. M.; Soliman, K. A.; Tantawy, A. H. Novel synthesized Schiff base-based cationic Gemini surfactants: Electrochemical investigation, theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. J. Mol. Liq. 2017, 232, 478-498.  doi: 10.1016/j.molliq.2017.02.105

    61. [61]

      Abd El-Lateef, H. M.; Elremaily, M. A. A. Divinyl Sulfone Cross-Linked β-Cyclodextrin Polymer as New and Effective Corrosion Inhibitor for Zn Anode in 3.5 M KOH. Trans. Indian Inst. Met. 2016, 69(9), 1783-1792.  doi: 10.1007/s12666-016-0838-3

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    3. [3]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    4. [4]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    5. [5]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    6. [6]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    9. [9]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    10. [10]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    11. [11]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    12. [12]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    15. [15]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    16. [16]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    17. [17]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    18. [18]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

Metrics
  • PDF Downloads(0)
  • Abstract views(780)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return