Citation: Lin Jia, Wen-Chao Zhang, Bin Tong, Rong-Jie Yang. Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 871-879. doi: 10.1007/s10118-018-2098-7 shu

Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS

  • Corresponding author: Rong-Jie Yang, yrj@bit.edu.cn
  • Received Date: 9 October 2017
    Accepted Date: 28 November 2017
    Available Online: 1 July 2018

  • Poly(lactic acid) (PLA) composites with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and DOPO-containing polyhedral oligomeric silsesquioxane (DOPO-POSS) were prepared via melting extrusion and injection molding. The crystallization, mechanical, and flame-retardant properties of PLA/DOPO and PLA/DOPO-POSS were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), tensile testing, thermogravimetric analysis (TGA), limiting oxygen index (LOI), and cone calorimeter test. The DSC results showed that the DOPO added could act as a plasticizer as reflected by lower glass transition temperature and inhibited crystallization of part of the PLA; the DOPO-POSS acted like a filler in the PLA matrix and slightly improved the crystallinity of the PLA matrix. The XRD and DSC analyses indicated that the PLA composites by cold molding injection were amorphous, and the PLA composites following a heat treatment in an oven at 120 °C for 30 min achieved crystallinity. All the PLA and its composites after heat treatment had improved mechanical properties. The thermogravimetric analysis (TGA) tests showed that the PLA, DOPO and DOPO-POSS decomposed separately in the PLA/DOPO and PLA/DOPO-POSS, respectively. The cone calorimeter tests offered clear evidence that addition of the DOPO-POSS resulted in an evident reduction of 25% for the peak of heat release rate (p-HRR). It was also confirmed that the crystalline flame-retardant PLA composites after heat treatment had better flame retardant properties than the amorphous PLA composites prepared by the cold molding.
  • 加载中
    1. [1]

      La Mantia, F. P.; Morreale, M. Green composites: a brief review. Composites Part A 2011, 42(6), 579-588.  doi: 10.1016/j.compositesa.2011.01.017

    2. [2]

      Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10(1), 19-26.

    3. [3]

      de Azeredo, H. M. C. d. Nanocomposites for food packaging applications. Food. Res. Int. 2009, 42(9), 1240-1253.  doi: 10.1016/j.foodres.2009.03.019

    4. [4]

      Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O. O.; Maspoch, M. L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95(2), 116-125.  doi: 10.1016/j.polymdegradstab.2009.11.045

    5. [5]

      Ye, L.; Ren, J.; Cai, S.-y.; Wang, Z.-g.; Li, J.-b. Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay. Chinese. J. Polym. Sci. 2016, 34(6), 785-796.  doi: 10.1007/s10118-016-1799-z

    6. [6]

      Ye, H.; Hou, K.; Zhou, Q. Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite. Chinese J. Polym. Sci. 2016, 34(1), 1-12.  doi: 10.1007/s10118-016-1724-5

    7. [7]

      Srithep, Y.; Nealey, P.; Turng, L. S. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym. Eng. Sci. 2013, 53(3), 580-588.  doi: 10.1002/pen.v53.3

    8. [8]

      Lv, S.; Gu, J.; Cao, J.; Tan, H.; Zhang, Y. Effect of annealing on the thermal properties of poly(lactic acid)/starch blends. Int. J. Biol. Macromol. 2015, 74, 297-303.  doi: 10.1016/j.ijbiomac.2014.12.022

    9. [9]

      Pérez-Fonseca, A. A.; Robledo-Ortíz, J. R.; González-Núñez, R.; Rodrigue, D. Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. J. Appl. Polym. Sci. 2016, DOI: 10.1002/app.43750.  doi: 10.1002/app.43750

    10. [10]

      Gu, L.; Qiu, J.; Sakai, E. Effect of DOPO-containing flame retardants on poly(lactic acid): non-flammability, mechanical properties and thermal behaviors. Chem. Res. Chin. Univ. 2017, 33(1), 143-149.  doi: 10.1007/s40242-017-6196-9

    11. [11]

      Jiang, P.; Gu, X.; Zhang, S.; Wu, S.; Zhao, Q.; Hu, Z. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind. Eng. Chem. Res. 2015, 54(11), 2974-2982.  doi: 10.1021/ie505021d

    12. [12]

      Yu, T.; Tuerhongjiang, T.; Sheng, C.; Li, Y. Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: Mechanical, thermal and flammability properties. Composites Part A 2017, 97, 60-66.  doi: 10.1016/j.compositesa.2017.03.004

    13. [13]

      Sirin, H.; Kodal, M.; Ozkoc, G. The influence of POSS type on the properties of PLA. Polym. Compos. 2016, 37(5), 1497-1506.  doi: 10.1002/pc.v37.5

    14. [14]

      Tang, L.; Qiu, Z. Effect of poly(ethylene glycol)-polyhedral oligomeric silsesquioxanes on the thermal and mechanical properties of biodegradable poly(l-lactide). Compos. Commun.. 2017, 3, 11-13.  doi: 10.1016/j.coco.2016.11.003

    15. [15]

      Turan, D.; Sirin, H.; Ozkoc, G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. J. Appl. Polym. Sci. 2011, 121(2), 1067-1075.  doi: 10.1002/app.33802

    16. [16]

      Xuan, S.; Hu, Y.; Song, L.; Wang, X.; Yang, H.; Lu, H. Synergistic effect of polyhedral oligomeric silsesquioxane on the flame retardancy and thermal degradation of intumescent flame retardant polylactide. Combust. Sci. Technol. 2012, 184(4), 456-468.  doi: 10.1080/00102202.2011.648032

    17. [17]

      Qiu, Z.; Pan, H. Preparation, crystallization and hydrolytic degradation of biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposite. Compos. Sci. Technol. 2010, 70(7), 1089-1094.  doi: 10.1016/j.compscitech.2009.11.001

    18. [18]

      Baldi, F.; Bignotti, F.; Fina, A.; Tabuani, D.; Riccò, T. Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J. Appl. Polym. Sci. 2007, 105(2), 935-943.  doi: 10.1002/(ISSN)1097-4628

    19. [19]

      Wang, X.; Xuan, S.; Song, L.; Yang, H.; Lu, H.; Hu, Y. Synergistic effect of POSS on mechanical properties, flammability, and thermal degradation of intumescent flame retardant polylactide composites. J. Macromol. Sci. Part B Phys. 2012, 51(2), 255-268.  doi: 10.1080/00222348.2011.585334

    20. [20]

      Zhang, W.; Yang, R. Synthesis of phosphorus-containing polyhedral oligomeric silsesquioxanes via hydrolytic condensation of a modified silane. J. Appl. Polym. Sci. 2011, 122(5), 3383-3389.  doi: 10.1002/app.34471

    21. [21]

      Zhang, W.; Li, X.; Guo, X.; Yang, R. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym. Degrad. Stab. 2010, 95(12), 2541-2546.  doi: 10.1016/j.polymdegradstab.2010.07.036

    22. [22]

      Tsuji, H.; Ikada, Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996, 197(10), 3483-3499.  doi: 10.1002/macp.1996.021971033

    23. [23]

      Yang, G.Z.; Chen, X.; Wang, W.; Wang, M.; Liu, T.; Li, C.-Z. Nonisothermal crystallization and melting behavior of a luminescent conjugated polymer, poly(9,9-dihexylfluorene-alt-co-2,5-didecyloxy-1,4-phenylene). J. Polym. Sci., Part B: Polym. Phys. 2007, 45(8), 976-987.  doi: 10.1002/(ISSN)1099-0488

    24. [24]

      Gumus, S.; Ozkoc, G.; Aytac, A. Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J. Appl. Polym. Sci. 2012, 123(5), 2837-2848.  doi: 10.1002/app.v123.5

    25. [25]

      Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41(4), 1352-1357.  doi: 10.1021/ma0706071

    26. [26]

      Schartel, B.; Hull, T. R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31(5), 327-354.  doi: 10.1002/(ISSN)1099-1018

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    3. [3]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    6. [6]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    7. [7]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    8. [8]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    9. [9]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    10. [10]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    11. [11]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    12. [12]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return