Citation: Heng Liu, Rui Zhuang, Bo Dong, Feng Wang, Yan-Ming Hu, Xue-Quan Zhang. Mono- and Binuclear Cobalt(II) Complexes Supported by Quinoline-2-imidate Ligands: Synthesis, Characterization, and 1,3-Butadiene Polymerization[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 943-952. doi: 10.1007/s10118-018-2097-8 shu

Mono- and Binuclear Cobalt(II) Complexes Supported by Quinoline-2-imidate Ligands: Synthesis, Characterization, and 1,3-Butadiene Polymerization

  • A series of mono- and binuclear Co(II) complexes (Co1Co7) supported by quinoline-2-imidate ligands were synthesized and thoroughly characterized. Measured by single crystal X-ray crystallography, complexes Co1 and Co3 adopted distorted tetrahedral structures around the cobalt center. Upon activation by ethylaluminium sesquichloride (EASC), these cobalt complexes exhibited high catalytic activity and cis-1,4-selectivity towards 1,3-butadiene polymerization. The effects of ligand environment, polymerization temperature, and cocatalyst types on the polymerization were investigated in detail. Interestingly, the binuclear Co(II) complexes exhibited high thermal stability, and the polymer yields were up to 97.2% even at a high temperature of 70 °C.
  • 加载中
    1. [1]

      Johnson, L. K.; Killian, C. M.; Brookhart, M. New Pd(II)-based and Ni(II)-based catalysts for polymerization of ethylene and alpha-olefins. J. Am. Chem. Soc. 1995, 117(23), 6414−6415  doi: 10.1021/ja00128a054

    2. [2]

      Johnson, L. K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc. 1996, 118(1), 267−268  doi: 10.1021/ja953247i

    3. [3]

      Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100(4), 1169−1204  doi: 10.1021/cr9804644

    4. [4]

      Ma, J.; Feng, C.; Wang, S.; Zhao, K.Q.; Sun, W.H.; Redshaw, C.; Solan, G. A. Bi- and tri-dentate imino-based iron and cobalt pre-catalysts for ethylene oligo-/polymerization. Inorg. Chem. Front. 2014, 1(1), 14−34  doi: 10.1039/C3QI00028A

    5. [5]

      Gibson, V. C.; Redshaw, C.; Solan, G. A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107(5), 1745−1776  doi: 10.1021/cr068437y

    6. [6]

      Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Stromberg, S.; White, A. J. P.; Williams, D. J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. J. Am. Chem. Soc. 1999, 121(38), 8728−8740  doi: 10.1021/ja990449w

    7. [7]

      Rose, J. Living polymerization of α-olefins with an α-diimine Ni(II) catalyst: formation of well-defined ethylene-propylene copolymers through controlled chain-walking. J. Am. Chem. Soc. 2006, 128(13), 4186−4187  doi: 10.1021/ja058183i

    8. [8]

      Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.H. Access to highly active and thermally stable iron procatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands. Chem. Commun. 2011, 47(11), 3257−3259  doi: 10.1039/c0cc05373b

    9. [9]

      Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI catalysts for olefin polymerization—a comprehensive treatment. Chem. Rev. 2011, 111(3), 2363−2449  doi: 10.1021/cr100294r

    10. [10]

      Wu, J.; Li, Y. Well-defined vanadium complexes as the catalysts for olefin polymerization. Coord. Chem. Rev. 2011, 255(19-20), 2303−2314  doi: 10.1016/j.ccr.2011.01.048

    11. [11]

      Yue, E.; Zhang, L.; Xing, Q.; Cao, X. P.; Hao, X.; Redshaw, C.; Sun, W. H. 2-(1-(2-Benzhydrylnaphthylimino)ethyl) pyridylnickel halides: synthesis, characterization, and ethylene polymerization behavior. Dalton Trans. 2014, 43(2), 423−431  doi: 10.1039/C3DT52234B

    12. [12]

      Pan, H.; Zhu, L.; Li, J.; Zang, D.; Fu, Z.; Fan, Z. A thermal stable α-diimine palladium catalyst for copolymerization of ethylene with functionalized olefins. J. Mol. Cat. A: Chem. 2014, 390, 76−82  doi: 10.1016/j.molcata.2014.03.008

    13. [13]

      Dai, S.; Sui, X.; Chen, C. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun. 2016, 52(58), 9113−9116  doi: 10.1039/C6CC00457A

    14. [14]

      Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine Nickel catalyst at elevated temperature. Macromolecules 2014, 47(10), 3325−3331  doi: 10.1021/ma5004634

    15. [15]

      Song, K.; Yang, W.; Li, B.; Liu, Q.; Redshaw, C.; Li, Y.; Sun, W. H. Nickel(ii) complexes bearing 4,5-bis(arylimino)pyrenylidenes: synthesis, characterization, and ethylene polymerization behaviour. Dalton Trans. 2013, 42(25), 9166−9175  doi: 10.1039/C2DT32343E

    16. [16]

      Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev. 2015, 115(22), 12091−12137  doi: 10.1021/cr500370f

    17. [17]

      Du, S.; Kong, S.; Shi, Q.; Mao, J.; Guo, C.; Yi, J.; Liang, T.; Sun, W. H. Enhancing the activity and thermal stability of nickel complex precatalysts using 1-[2,6-bis(bis(4-fluorophenyl)methyl)-4-methyl phenylimino]-2-arylimino acenaphthylene derivatives. Organometallics 2015, 34(3), 582−590  doi: 10.1021/om500943u

    18. [18]

      Suo, H.; Zhao, T.; Wang, Y.; Ban, Q.; Sun, W. H. N-(2,2-dimethyl-1-(quinolin-2-yl)propylidene) arylaminonickel complexes and their ethylene oligomerization. Molecules 2017, 22(4), 630  doi: 10.3390/molecules22040630

    19. [19]

      Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer 2009, 50(26), 6259−6264  doi: 10.1016/j.polymer.2009.10.054

    20. [20]

      Chen, H. Controlled polymerization of isoprene promoted by a type of hemilabile X[double bond, length as m-dash]PN3 (X = O, S) ligand supported cobalt(ii) complexes: the role of a hemilabile donor on the level of control. Polym. Chem. 2017, 8(11), 1805−1814  doi: 10.1039/C7PY00252A

    21. [21]

      Jiang, X.; Wen, X.; Sun, W. H.; He, A. Polymerization of isoprene catalyzed by 2-(methyl-2-benzimidazolyl)-6-(1-(arylimino) ethyl) pyridine iron(III) trichloride with an additional donor. J. Polym. Sci., Part A: Polym. Chem. 2014, 52(17), 2398−2398

    22. [22]

      Liu, H.; Yang, S. Z.; Wang, F.; Bai, C. X.; Hu, Y. M; Zhang, X. Q. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing pyridine-2-imidate ligands. Chinese J. Polym. Sci. 2016, 34(9), 1060−1069  doi: 10.1007/s10118-016-1825-1

    23. [23]

      Gong, D.; Jia, X.; Wang, B.; Wang, F.; Zhang, C.; Zhang, X.; Jiang, L.; Dong, W. Highly trans-1,4 selective polymerization of 1,3-butadiene initiated by iron(III) bis(imino)pyridyl complexes. Inorg. Chim. Acta 2011, 373(1), 47−53  doi: 10.1016/j.ica.2011.03.047

    24. [24]

      Wang, B.; Bi, J.; Zhang, C.; Dai, Q.; Bai, C.; Zhang, X.; Hu, Y.; Jiang, L. Highly active and trans-1,4 specific polymerization of 1,3-butadiene catalyzed by 2-pyrazolyl substituted 1,10-phenanthroline ligated iron(II) complexes. Polymer 2013, 54(19), 5174−5181  doi: 10.1016/j.polymer.2013.07.021

    25. [25]

      Ai, P.; Chen, L.; Guo, Y.; Jie, S.; Li, B. G. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. J. Organom. Chem. 2012, 705(0), 51−58

    26. [26]

      Cariou, R.; Chirinos, J. J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Britovsek, G. J. P.; White, A. J. P. The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene. Dalton Trans. 2010, 39(38), 9039−9045  doi: 10.1039/c0dt00402b

    27. [27]

      Gong, D.; Wang, B.; Jia, X.; Zhang, X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalton Trans. 2014, 43(10), 4169−4178  doi: 10.1039/c3dt52708e

    28. [28]

      Jie, S.; Ai, P.; Li, B. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes. Dalton Trans. 2011, 40(41), 10975−10982  doi: 10.1039/c1dt11073j

    29. [29]

      Endo, K.; Hatakeyama, N. Stereospecific and molecular weight-controlled polymerization of 1,3-butadiene with Co(acac)3-MAO catalyst. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(16), 2793−2798  doi: 10.1002/(ISSN)1099-0518

    30. [30]

      Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. Synthesis, characterization and butadiene polymerization studies of cobalt(II) complexes bearing bisiminopyridine ligand. J. Organom. Chem. 2011, 696(8), 1584−1590  doi: 10.1016/j.jorganchem.2011.01.015

    31. [31]

      Jia, X.; Liu, H.; Hu, Y.; Dai, Q.; Bi, J.; Bai, C.; Zhang, X. Highly active and cis-1,4 selective polymerization of 1,3-butadiene catalyzed by cobalt(II) complexes bearing α-diimine ligands. Chin. J. Cat. 2013, 34(8), 1560−1569  doi: 10.1016/S1872-2067(12)60625-1

    32. [32]

      Alnajrani, M. N.; Mair, F. S. Synthesis and characterization of [small beta]-triketimine cobalt complexes and their behaviour in the polymerization of 1,3-butadiene. Dalton Trans. 2014, 43(42), 15727−15736  doi: 10.1039/C4DT02196G

    33. [33]

      Alnajrani, M. N.; Mair, F. S. The behaviour of [small beta]-triketimine cobalt complexes in the polymerization of isoprene. RSC Adv. 2015, 5(57), 46372−46385  doi: 10.1039/C5RA06792H

    34. [34]

      Chandran, D.; Kwak, C. H.; Ha, C. S.; Kim, I. Polymerization of 1,3-butadiene by bis(salicylaldiminate)cobalt(II) catalysts combined with organoaluminium cocatalysts. Catal. Today 2008, 131(1-4), 505−512  doi: 10.1016/j.cattod.2007.10.068

    35. [35]

      Endo, K.; Kitagawa, T.; Nakatani, K. Effect of an alkyl substituted in salen ligands on 1,4-cis selectivity and molecular weight control in the polymerization of 1,3-butadiene with (salen)Co(II) complexes in combination with methylaluminoxane. J. Polym. Sci., Part A: Polym. Chem. 2006, 44(13), 4088−4094  doi: 10.1002/(ISSN)1099-0518

    36. [36]

      Guo, J.; Zhang, C.; Bi, J.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: synthesis, characterization, and 1,3-butadiene polymerization behaviors. J. Organom. Chem. 2015, 798, 414−421  doi: 10.1016/j.jorganchem.2015.05.004

    37. [37]

      Wang, B.; Gong, D.; Bi, J.; Dai, Q.; Zhang, C.; Hu, Y.; Zhang, X.; Jiang, L. Synthesis, characterization and 1,3-butadiene polymerization behaviors of cobalt complexes bearing 2-pyrazolyl-substituted 1,10-phenanthroline ligands. Appl. Organomet. Chem. 2013, 27(4), 245−252  doi: 10.1002/aoc.v27.4

    38. [38]

      Guo, J.; Wang, B.; Bi, J.; Zhang, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Synthesis, characterization and 1,3-butadiene polymerization studies of cobalt dichloride complexes bearing pyridine bisoxazoline ligands. Polymer 2015, 59(24), 124−132

    39. [39]

      Appukuttan, V.; Zhang, L.; Ha, J. Y.; Chandran, D.; Bahuleyan, B. K.; Ha, C.S.; Kim, I. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(II) complexes ligated by 2,6-bis(benzimidazolyl)pyridines. J. Mol. Catal. A: Chem. 2010, 325(1-2), 84−90  doi: 10.1016/j.molcata.2010.04.002

    40. [40]

      Gong, D.; Jia, X.; Wang, B.; Zhang, X.; Jiang, L. Synthesis, characterization, and butadiene polymerization of iron(III), iron(II) and cobalt(II) chlorides bearing 2,6-bis(2-benzimidazolyl)pyridyl or 2,6-bis(pyrazol)pyridine ligand. J. Organom. Chem. 2012, 702(1), 10−18

    41. [41]

      Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50(5), 1150−1158  doi: 10.1016/j.polymer.2008.12.047

    42. [42]

      Liu, H.; Jia, X.; Wang, F.; Dai, Q.; Wang, B.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(ii) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans. 2013, 42(37), 13723−13732  doi: 10.1039/c3dt51403j

    43. [43]

      Liu, H.; Wang, F.; Jia, X.; Liu, L.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand. J. Mol. Cat. A: Chem. 2014, 391, 25−35

    44. [44]

      Delferro, M.; Marks, T. J. Multinuclear Olefin Polymerization Catalysts. Chem. Rev. 2011, 111(2), 2450−2485

    45. [45]

      Sun, W.H.; Xing, Q.; Yu, J.; Novikova, E.; Zhao, W.; Tang, X.; Liang, T.; Redshaw, C. Probing the characteristics of mono- or bimetallic (iron or cobalt) complexes bearing 2,4-bis(6-iminopyridin-2-yl)-3H-benzazepines: synthesis, characterization, and ethylene reactivity. Organometallics 2013, 32(8), 2309−2318  doi: 10.1021/om301086p

    46. [46]

      Han, S.; Yao, E.; Qin, W.; Zhang, S.; Ma, Y. Binuclear heteroligated titanium catalyst based on phenoxyimine ligands: synthesis, characterization, and ethylene (Co)polymerization. Macromolecules 2012, 45(10), 4054−4059  doi: 10.1021/ma300384w

    47. [47]

      Salata, M. R.; Marks, T. J. Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. J. Am. Chem. Soc. 2008, 130(1), 12−13  doi: 10.1021/ja076857e

    48. [48]

      Wang, R.; Sui, X.; Pang, W.; Chen, C. Ethylene polymerization by xanthene-bridged dinuclear α-diimine NiII complexes. Chemcatchem 2016, 8(2), 434−440  doi: 10.1002/cctc.201501041

    49. [49]

      Liu, J.; Li, Y.; Liu, J.; Li, Z. Ethylene polymerization with a highly active and long-lifetime macrocycle trinuclear 2,6-bis(imino)pyridyliron. Macromolecules 2005, 38(7), 2559−2563  doi: 10.1021/ma047685y

    50. [50]

      Song, S.; Zhao, W.; Wang, L.; Redshaw, C.; Wang, F.; Sun, W. Synthesis, characterization and catalytic behavior toward ethylene of cobalt(II) and iron(II) complexes bearing 2-(1-aryliminoethylidene)quinolines. J. Organom. Chem. 2011, 696(18), 3029−3035  doi: 10.1016/j.jorganchem.2011.06.003

    51. [51]

      Liu, H.; Wang, F.; Liu, L.; Dong, B.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Synthesis, characterization and 1,3-butadiene polymerization behaviors of three ONO, ONN, and NNN tridentate Co(II) complexes. Inorg. Chim. Acta 2014, 421, 284−291

  • 加载中
    1. [1]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    2. [2]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    3. [3]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    4. [4]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    7. [7]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    14. [14]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    15. [15]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    16. [16]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    17. [17]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(0)
  • Abstract views(649)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return