Citation: Hai-Mu Ye, Xiao-Tong Chen, Ping Liu, Na Yan. Prominently Promoting the Formation of Poly(butylene adipate) α-Form Crystals by Coalescing from Inclusion Complex[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 866-870. doi: 10.1007/s10118-018-2095-x shu

Prominently Promoting the Formation of Poly(butylene adipate) α-Form Crystals by Coalescing from Inclusion Complex

  • Corresponding author: Hai-Mu Ye, yehaimu@cup.edu.cn
  • Received Date: 12 October 2017
    Accepted Date: 23 November 2017
    Available Online: 11 July 2018

  • We successfully use a co-precipitation method to prepare inclusion complex between poly(butylene adipate) (PBA) chains (guest component) and urea molecules (host component). The PBA/urea inclusion complex is confirmed to adopt a hexagonal crystal modification with lattice parameters of a = 8.14 Å and c = 10.92 Å, and the interaction between PBA chains and urea is van der Waals force. The singly isolated PBA chains are suggested to take some gauche conformation, which is different from the all-trans conformation in β-form PBA. Furthermore, we employ the isolated PBA chains which are uniformly pre-established in a specific conformation in urea channels to regulate the crystal form of PBA for the first time. After removing the host urea molecules, the coalesced PBA chains are found to solely crystallize into α-form crystals at different coalescing temperatures. By comparing the FTIR spectra, it is found that PBA chains in inclusion complex plausibly contain some similar conformers as those in α-form crystal, which is suggested to be the intrinsic reason for the sole formation of α-form crystals. This research proves that inclusion complex can be used as a very effective method to regulate polymorphism of semi-crystalline polymers.
  • 加载中
    1. [1]

      Minke, R.; Blackwell, J. Polymorphic structures of poly(tetramethylene adipate). J. Macromol. Sci., Part B: Phys. 1979, 16(3), 407-417.  doi: 10.1080/00222347908212305

    2. [2]

      Minke, R.; Blackwell, J. Single crystals of poly(tetramethylene adipate). J. Macromol. Sci., Part B: Phys. 1980, 18(2), 233-255.  doi: 10.1080/00222348008241380

    3. [3]

      Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polym. Degrad. Stab. 2005, 87(1), 191-199.  doi: 10.1016/j.polymdegradstab.2004.08.007

    4. [4]

      Song, Y. Y.; Ye, H. M.; Xu, J.; Hou, K.; Zhou, Q.; Lu, G. W. Stretch-induced bidirectional polymorphic transformation of crystals in poly(butylene adipate). Polymer 2014, 55(13), 3054-3061.  doi: 10.1016/j.polymer.2014.05.011

    5. [5]

      Pouget, E.; Almontassir, A.; Casas, M. T.; Puiggalí, J. On the crystalline structures of poly(tetramethylene adipate). Macromolecules 2003, 36(3), 698-705.  doi: 10.1021/ma0214052

    6. [6]

      Iwata, T.; Kobayashi, S.; Tabata, K.; Yonezawa, N.; Doi, Y. Crystal structure, thermal behavior and enzymatic degradation of poly(tetramethylene adipate) solution-grown chain-folded lamellar crystals. Macromol. Biosci. 2004, 4(3), 296-307.  doi: 10.1002/(ISSN)1616-5195

    7. [7]

      Noguchi, K.; Kondo, H.; Ichikawa, Y.; Okuyama K.; Washiyama, J. Molecular and crystal structure of poly(tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction. Polymer 2005, 46(24), 10823-10830.  doi: 10.1016/j.polymer.2005.09.010

    8. [8]

      Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 2004, 5(2), 371-378.  doi: 10.1021/bm0343850

    9. [9]

      Gan, Z.; Abe, H.; Doi, Y. Temperature-induced polymorphic crystals of poly(butylene adipate). Macromol. Chem. Phys. 2002, 203(16), 2369-2374.  doi: 10.1002/macp.200290007

    10. [10]

      Woo, E. M.; Wu, M. C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci., Part B: Polym. Phys. 2005, 43(13), 1662-1672.  doi: 10.1002/(ISSN)1099-0488

    11. [11]

      Liang, R.; Chen, Y. C.; Zhang, C. Q.; Yin, J.; Liu, X. L.; Wang, L. K.; Kong, R.; Feng, X.; Yang, J. J. Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: Zinc phenylphosphonate. Chinese J. Polym. Sci. 2017, 35(4), 558-568.  doi: 10.1007/s10118-017-1917-6

    12. [12]

      Tang, Y. R.; Xu, J.; Guo, B. H. Polymorphic behavior and enzymatic degradation of poly(butylene adipate) in the presence of hexagonal boron nitride nanosheets. Ind. Eng. Chem. Res. 2015, 54(6), 1832-1841.  doi: 10.1021/ie504593z

    13. [13]

      Yang, J.; Liang, R.; Chen, Y.; Zhang, C.; Zhang, R.; Wang, X.; Kong, R.; Chen, Q. Using a self-assemblable nucleating agent to tailor crystallization behavior, crystal morphology, polymorphic crystalline structure, and biodegradability of poly(1,4-butylene adipate). Ind. Eng. Chem. Res. 2017, 56(28), 7910-7919.  doi: 10.1021/acs.iecr.7b01783

    14. [14]

      Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue Y. Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride). Macromolecules 2010, 43(20), 8610-8618.  doi: 10.1021/ma1015566

    15. [15]

      Sun, X.; Pi, F.; Zhang, J.; Takahashi, I.; Wang, F.; Yan, S.; Ozaki, Y. Study on the phase transition behavior of poly(butylene adipate) in its blends with poly(vinyl phenol). J. Phys. Chem. B 2011, 115(9), 1950-1957.  doi: 10.1021/jp110003m

    16. [16]

      Wang, H. J.; Feng, H. P.; Wang, X. C.; Guo, P. Y.; Zhao, T. S.; Ren, L. F.; Qiang, X. H.; Xiang, Y. H.; Yan, C. Effects of crystallization temperature and blend ratio on the crystal structure of poly(butylene adipate) in the poly(butylene adipate)/poly(butylene succinate) blends. Chinese J. Polym. Sci. 2014, 32(4), 488-496.  doi: 10.1007/s10118-014-1420-2

    17. [17]

      Liang, Z.; Pan, P.; Zhu, B.; Inoue, Y. Isomorphic crystallization of poly(hexamethylene adipate-co-butylene adipate): regulating crystal modification of polymorphic polyester from internal crystalline lattice. Macromolecules 2010, 43(15), 6429-6437.  doi: 10.1021/ma1008989

    18. [18]

      Zhao, L.; Gan, Z. Effect of copolymerized butylene terephthalate chains on polymorphism and enzymatic degradation of poly(butylene adipate). Polym. Degrad. Stab. 2006, 91(10), 2429-2436.  doi: 10.1016/j.polymdegradstab.2006.03.012

    19. [19]

      Sun, Y.; Li, H.; Huang, Y.; Chen, E.; Zhao, L.; Gan, Z.; Yan, S. Epitaxial crystallization of poly(butylene adipate) on highly oriented polyethylene thin film. Macromolecules 2005, 38(7), 2739-2743.  doi: 10.1021/ma0474269

    20. [20]

      Ning, Z. B.; Nielsen, R.; Zhao, L. F.; Yu, D. H.; Gan, Z. H. Influence of teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate). Chinese J. Polym. Sci. 2014, 32(9), 1243-1252.  doi: 10.1007/s10118-014-1503-0

    21. [21]

      Tang, Y. R.; Li, T.; Ye, H. M.; Xu, J.; Guo, B. H. The effect of polymer-substrate interaction on the nucleation property: comparing study of graphene and hexagonal boron nitride nanosheets. Chinese J. Polym. Sci. 2016, 34(8), 1021-1031.  doi: 10.1007/s10118-016-1816-2

    22. [22]

      Imai, M.; Kaji, K.; Kanaya, T.; Sakai, Y. Ordering process in the induction period of crystallization of poly(ethylene terephthalate). Phys. Rev. B 1995, 52(17), 12696.  doi: 10.1103/PhysRevB.52.12696

    23. [23]

      Wang, C. X.; Zhang, X. C.; Song, Y. Y.; Zhou, Q.; Ye, H. M. Regulating the polymorphism behaviour and crystal transformation of poly(butylene adipate) by incorporating butylene fumarate units into the crystal lattice. RSC Adv. 2016, 6(1), 607-616.  doi: 10.1039/C5RA21203K

    24. [24]

      Song, Y. Y.; Ye, H. M.; Meng, X. Y.; Zhou, Q.; Lu, G. W. Novel polymorphism behavior of poly(butylene adipate) in its nanocomposites with carbon nanofibers. RSC Adv. 2015, 5(124), 102384-102391.  doi: 10.1039/C5RA19099A

    25. [25]

      Ye, H. M.; Song, Y. Y.; Meng, X.; Zhou, Q. Fractionated crystallization, polymorphism and crystal transformation of poly(butylene adipate) confined in electrospun immiscible blend fibers with polystyrene. RSC Adv. 2016, 6(61), 55961-55969.  doi: 10.1039/C6RA09117B

    26. [26]

      Lu, J.; Mirau, P. A.; Tonelli, A. E. Chain conformations and dynamics of crystalline polymers as observed in their inclusion compounds by solid-state NMR. Prog. Polym. Sci. 2002, 27(2), 357-401.  doi: 10.1016/S0079-6700(01)00045-4

    27. [27]

      Gurarslan, A.; Shen, J.; Tonelli, A. E. Behavior of poly(ε-caprolactone)s (PCLs) coalesced from their stoichiometric urea inclusion compounds and their use as nucleants for crystallizing PCL melts: Dependence on PCL molecular weights. Macromolecules 2012, 45(6), 2835-2840.  doi: 10.1021/ma300270g

    28. [28]

      Zhong, Z.; Yang, X.; Guo, B. H.; Xu, J., Huang, Y. Dissolution behavior of the crystalline inclusion complex formed by the drug diflunisal and poly(ε-caprolactone). Cryst. Growth Des. 2016, 17(1), 355-362.

    29. [29]

      Ye, H. M.; Chen, X. T.; Liu, P.; Wu, S. Y.; Jiang, Z.; Xiong, B.; Xu, J. Preparation of poly(butylene succinate) crystals with exceptionally high melting point and crystallinity from its inclusion complex. Macromolecules 2017, 50(14), 5425-5433.  doi: 10.1021/acs.macromol.7b00656

    30. [30]

      Ye, H. M.; Song, Y. Y.; Xu, J.; Guo, B. H.; Zhou, Q. Melting behavior of inclusion complex formed between polyethylene glycol oligomer and urea. Polymer 2013, 54(13), 3385-3391.  doi: 10.1016/j.polymer.2013.04.026

    31. [31]

      Chenite, A.; Brisse, F. Structural investigations of urea-aliphatic polyester adducts. Macromolecules 1993, 26(12), 3055-3061.  doi: 10.1021/ma00064a010

    32. [32]

      Smith, A. E. The crystal structure of the urea-hydrocarbon complexes. Acta Crystallogr. 1952, 5(2), 224-235.  doi: 10.1107/S0365110X52000629

    33. [33]

      Meaurio, E., López-Rodríguez, N.; Sarasua, J. R. Infrared spectrum of poly(L-lactide): application to crystallinity studies. Macromolecules 2006, 39(26), 9291-9301.  doi: 10.1021/ma061890r

    34. [34]

      Meaurio, E., Zuza, E., López-Rodríguez, N.; Sarasua, J. R. Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. J. Phys. Chem. B 2006, 110(11), 5790-5800.  doi: 10.1021/jp055203u

    35. [35]

      Ma, W.; Zhang, J.; Wang, X. Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N,N-dimethylformamide mixed solvent. J. Mater. Sci. 2008, 43(1), 398-401.  doi: 10.1007/s10853-007-2211-8

    36. [36]

      Yan, C.; Zhang, Y.; Hu, Y.; Ozaki, Y.; Shen, D.; Gan, Z.; Yan, S.; Takahashi, I. Melt crystallization and crystal transition of poly(butylene adipate) revealed by infrared spectroscopy. J. Phys. Chem. B 2008, 112(11), 3311-3314.  doi: 10.1021/jp077195i

  • 加载中
    1. [1]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    2. [2]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    3. [3]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    4. [4]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    5. [5]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    8. [8]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    9. [9]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    10. [10]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    11. [11]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    12. [12]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    13. [13]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    14. [14]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    15. [15]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    16. [16]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    19. [19]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    20. [20]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return