Citation: Chun-Wei Zhuo, Yu-Sheng Qin, Xian-Hong Wang, Fo-Song Wang. Steric Hindrance Ligand Strategy to Aluminum Porphyrin Catalyst for Completely Alternative Copolymerization of CO2 and Propylene Oxide[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 252-260. doi: 10.1007/s10118-018-2093-z shu

Steric Hindrance Ligand Strategy to Aluminum Porphyrin Catalyst for Completely Alternative Copolymerization of CO2 and Propylene Oxide

  • Corresponding author: Yu-Sheng Qin, ysqin@ciac.ac.cn Xian-Hong Wang, xhwang@ciac.ac.cn
  • Received Date: 6 November 2017
    Accepted Date: 15 November 2017
    Available Online: 29 November 2017

  • Aluminum porphyrin complexes are heavy-metal-free and soil-tolerant green catalysts for the copolymerization of CO2 and propylene oxide (PO), but they suffer from relatively poor poly(propylene carbonate) (PPC) selectivity. Herein, steric hindrance porphyrin ligand was used to enhance the PPC selectivity. Typically, a bulky anthracene-like group was incorporated into the porphyrin ring to form 5, 10, 15, 20-tetra(1, 2, 3, 4, 5, 6, 7, 8-octahydro-1, 4:5, 8-dimethanoanthracen-9-yl) porphyrin, the aluminum porphyrin complex with this ligand, in combination with bis(triphenylphosphine) iminium chloride as a co-catalyst, produced completely alternate PPC. Additionally, the obtained PPC showed high regioselectivity, with a head-to-tail linkage content (HT) of 92%. Therefore, we demonstrated that introduction of bulky steric ligand into the porphyrin ring could reduce the propylene oxide homopolymerization activity leading to excellent PPC selectivity, and improve regioselectivity for the PO ring-opening during the copolymerization.
  • 加载中
    1. [1]

      Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide with organometallic compounds[J]. Makromol. Chem., 1969,130:210-220. doi: 10.1002/macp.1969.021300112

    2. [2]

      Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide[J]. J. Polym. Sci., Part B:Polym. Lett., 1969,7:287-292. doi: 10.1002/pol.1969.110070408

    3. [3]

      Liu B. Y., Zhao X. J., Wang X. H., Wang F. S.. Copolymerization of carbon dioxide and propylene oxidewith Ln(CCl3COO)3-based catalyst:the role of rare-earth compound in the catalytic system[J]. J. Polym. Sci., Part A:Polym. Chem., 2001,39:2751-2754.  

    4. [4]

      Quan Z. L., Wang X. H., Zhao X. J., Wang F. S.. Copolymerization of CO2 and propylene oxide under rare earth ternarycatalyst:design of ligand in yttrium complex[J]. Polymer, 2003,44:5605-5610. doi: 10.1016/S0032-3861(03)00561-5

    5. [5]

      Paddock R. L., Nguyen S. T.. Chemical CO2 fixation:Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides[J]. J. Am. Chem. Soc., 2001,123:11498-11499. doi: 10.1021/ja0164677

    6. [6]

      Darensbourg D. J., Yarbrough J. C.. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. J. Am. Chem. Soc., 2002,124:6335-6342. doi: 10.1021/ja012714v

    7. [7]

      Darensbourg D. J., Yarbrough J. C., Ortiz C., Fang C. C.. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production[J]. J. Am. Chem. Soc., 2003,125:7586-7591.

    8. [8]

      Qin Z.Q., Thomas C. M., Lee S., Coates G. W.. Cobalt-based complexes for the copolymerization of propylene oxide and CO2:active and selective catalysts for polycarbonate synthesis[J]. Angew. Chem. Int. Ed., 2003,42:5484-5487. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Nakano K., Kamada T., Nozaki K.. Selective formation of polycarbonate over cyclic carbonate:copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(Ⅲ) complex with a piperidiniumend-capping arm[J]. Angew. Chem. Int. Ed., 2006,45:7274-7277. doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Ren W. M., Liu Z. W., Wen Y. Q., Zhang R., Lu X. B.. Mechanistic aspects of the copolymerization of CO2 withepoxides using a thermally stable single-site cobalt(Ⅲ)catalyst[J]. J. Am. Chem. Soc., 2009,131:11509-11518. doi: 10.1021/ja9033999

    11. [11]

      Noh E. K., Na S. J., Sujith S., Kim S. W., Lee B. Y.. Two components in a molecule:highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization[J]. J. Am. Chem. Soc., 2007,129:8082-8083. doi: 10.1021/ja071290n

    12. [12]

      Sujith S., Min J. K., Seong J. E., Na S. J., Lee B. Y.. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization[J]. Angew. Chem. Int. Ed., 2008,47:7306-7309. doi: 10.1002/anie.v47:38

    13. [13]

      Na S. J., Sujith S., Cyriac A., Kim B. E., Yoo J., Kang Y. K., Han S. J., Lee C., Lee B. Y.. Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization:a salen-cobaltate complex of an unusual binding mode[J]. Inorg. Chem., 2009,48:10455-10465. doi: 10.1021/ic901584u

    14. [14]

      Cyriac A., Jeon J. Y., Varghese J. K., Park J. H., Choi S. Y., Chung Y. K., Lee B. Y.. Unusual coordination mode of tetradentate Schiff base cobalt(Ⅲ) complexes[J]. Dalton Trans., 2012,41:1444-1447. doi: 10.1039/C2DT11871H

    15. [15]

      Takeda N, Inoue S.. Polymerization of 1, 2-epoxypropane and copolymerizationwith carbon dioxide catalyzed by metalloporphyrins[J]. Makromol Chem., 1978,179:1377-1381. doi: 10.1002/macp.1978.021790529

    16. [16]

      Darensbourg D. J., Billodeaux D. R.. Aluminum salen complexes and tetrabutylammonium salts:abinary catalytic system for production of polycarbonates from CO2 and cyclohexene oxide[J]. Inorg. Chem., 2005,44:1433-1442. doi: 10.1021/ic048508g

    17. [17]

      Kember M. R., Knight P. D., Reung P. T. R., Williams C. K.. Highly active dizinc catalyst for the copolymerization of carbondioxide and cyclohexene oxide at one atmosphere pressure[J]. Angew. Chem. Int. Ed., 2009,48:931-933. doi: 10.1002/anie.v48:5

    18. [18]

      Kember M. R., White A. J. P., Williams C. K.. Di-and tri-zinc catalysts for the low-pressure copolymerization of CO2 and cyclohexene oxide[J]. Inorg. Chem., 2009,48:9535-9542. doi: 10.1021/ic901109e

    19. [19]

      Ema T., Miyazaki Y., Koyama S., Yano Y., Sakai T.. A bifunctional catalyst for carbon dioxide fixation:cooperative double activation of epoxides for the synthesis of cyclic carbonates[J]. Chem. Commun., 2012,48:4489-4491. doi: 10.1039/c2cc30591g

    20. [20]

      Dengler J. E., Lehenmeier M. W., Klaus S., Anderson C. E., Herdtweck E., Rieger B.. A one-component iron catalyst for cyclic propylene carbonate synthesis[J]. Eur. J. Inorg. Chem., 2011(3):336-343.  

    21. [21]

      Buchard A., Kember M. R., Sandeman K. G., Williams C. K.. A bimetallic iron(Ⅲ) catalyst for CO2/epoxide coupling[J]. Chem. Commun., 2011,47:212-214. doi: 10.1039/C0CC02205E

    22. [22]

      Nakano K., Kobayashi K., Nozaki K.. Tetravalent metal complexes as a new family of catalysts forcopolymerization of epoxides with carbon dioxide[J]. J. Am. Chem. Soc., 2011,133:10720-10723. doi: 10.1021/ja203382q

    23. [23]

      Wang Y., Qin Y. S., Wang X. H., Wang F. S.. Trivalent titanium salen complex:thermally robust and highlyactive catalyst for copolymerization of CO2 and cyclohexene oxide[J]. ACS Catal., 2015:393-396.

    24. [24]

      Kember M. R., Williams C. K.. Efficient magnesium catalysts for the copolymerization of epoxidesand CO2; using water to synthesize polycarbonate polyols[J]. J. Am. Chem. Soc., 2012,134:15676-15679. doi: 10.1021/ja307096m

    25. [25]

      Nakano K., Kobayashi K., Ohkawara T., Imoto H., Nozaki K.. Copolymerization of epoxides with carbon dioxide catalyzed by iron-corrole complexes:synthesis of a crystalline copolymer[J]. J. Am. Chem. Soc., 2013,135:8456-8459. doi: 10.1021/ja4028633

    26. [26]

      Dong Y. L., Wang X. H., Zhao X. J., Wang F. S.. Facile synthesis of poly(ether carbonate)s via copolymerization of CO2 and propylene oxide under combinatorial catalyst of rare earth ternary complex and double metal cyanide complex[J]. J. Polym. Sci., Part A:Polym. Chem., 2011,50:362-370.  

    27. [27]

      Aida T., Inoue S.. Activation of carbon dioxide with aluminum porphyrin andreaction with epoxide. studies on(tetraphenylporphinato)aluminum alkoxide having a longoxyalkylene chain as the alkoxide group[J]. J. Am. Chem. Soc., 1983,105:1304-1309.

    28. [28]

      Qin Y. S., Wang X. H., Zhang S. B., Zhao X. J., Wang F. S.. Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specificpoly(propylene carbonate) with high molecular weight[J]. J. Polym. Sci., Part A:Polym. Chem., 2008,46:5959-5967. doi: 10.1002/pola.v46:17

    29. [29]

      Wu W., Sheng X. F., Qin Y. S., Qiao L. J., Miao Y. Y., Wang X. H., Wang F. S.. Bifunctional aluminum porphyrin complex:soil tolerant catalyst forcopolymerization of CO2 and propylene oxide[J]. J. Polym. Sci., Part A:Polym. Chem., 2014,52:2346-2355. doi: 10.1002/pola.v52.16

    30. [30]

      Chatterjee C., Chisholm M. H.. The Influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(Ⅲ) complexes. 1. aluminum chemistry[J]. Inorg. Chem., 2011,50:4481-4492.  

    31. [31]

      Ohkawara T., Suzuki K., Nakano K., Mori S., Nozaki K.. Facile estimation of catalytic activity and selectivities incopolymerization of propylene oxide with carbon dioxide mediatedby metal complexes with planar tetradentate ligand[J]. J. Am. Chem. Soc., 2014,136:10728-10735. doi: 10.1021/ja5046814

    32. [32]

      Adler A. D., Longo F. R., Finarelli J. D., Goldmacher J., Assour J., Korsakoff L.. A simplified synthesis for meso-tetraphenylporphine[J]. J. Org. Chem., 1967,32476.  

    33. [33]

      Halterman R. L., Jan S. T.. Catalytic asymmetric epoxidation of unfunctionalized alkenes using the 1st D4-symmetrical metallotetraphenylporphyrin[J]. J. Org. Chem., 1991,56:5253-5254. doi: 10.1021/jo00018a008

    34. [34]

      Chisholm M. H., Zhou Z. P.. Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate)[J]. J. Am. Chem. Soc., 2004,126:11030-11039. doi: 10.1021/ja0394232

    35. [35]

      Chisholm M. H., Navarro-Llobet D.. NMR assignments of regioregular poly(propylene oxide) at the triad and tetrad level[J]. Macromolecules, 2002,35:2389-2392. doi: 10.1021/ma0119934

    36. [36]

      Lu X. B., Wang Y.. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions[J]. Angew. Chem. Int. Ed., 2004,43:3574-3577. doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Cohen C. T., Chu T., Coates G. W.. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide:combining high activity and selectivity[J]. J. Am. Chem. Soc., 2005,127:10869-10878. doi: 10.1021/ja051744l

    38. [38]

      Ren W. M., Zhang W. Z, Lu X. B.. Highly regio-and stereo-selective copolymerization of CO2 with racemic propylene oxide catalyzed by unsymmetrical (S, S, S)-salenCo(Ⅲ) complexes[J]. Sci. China Chem., 2010,53:1646-1652. doi: 10.1007/s11426-010-4049-1

    39. [39]

      Qin Y. S., Chen L. J., Wang X. H., Zhao X. J., Wang F. S.. Alternating copolymerization of cyclohexene oxide and carbon sioxide under cobalt porphyrin catalyst[J]. Chinese J. Polym. Sci., 2011,29:602-608. doi: 10.1007/s10118-011-1073-3

    40. [40]

      Chatterjee C., Chisholm M. H., El-Khaldy A., McIntosh R. D., Miller J. T., Wu T.. Influence of the metal (Al, Cr, and Co) and substituents of the porphyrin in controlling reactions involved in copolymerization of propylene oxide and carbon dioxide by porphyrin metal(Ⅲ) complexes. 3. cobaltchemistry[J]. Inorg. Chem., 2013,52:4547-4553. doi: 10.1021/ic400068y

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    3. [3]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    4. [4]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    5. [5]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    6. [6]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    7. [7]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    8. [8]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    9. [9]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    12. [12]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    15. [15]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    16. [16]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    17. [17]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    20. [20]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return