Synergistic Effect and Fluorination Effect in Ethylene Polymerization by Nickel Phenoxyiminato Catalysts
- Corresponding author: Yu-Guo Ma, ygma@pku.edu.cn
Citation: Di Xu, Xiang-Xiang Zhao, Zhong-Tao Chen, Yu-Guo Ma. Synergistic Effect and Fluorination Effect in Ethylene Polymerization by Nickel Phenoxyiminato Catalysts[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 244-251. doi: 10.1007/s10118-018-2081-3
Younkin T. R., Connor E. F., Henderson J. I., Friedrich S. K., Grubbs R. H., Bansleben D. A.. Neutral, single-component nickel(Ⅱ) polyolefin catalysts that tolerate heteroatoms[J]. Science, 2000,287(5452):460-462. doi: 10.1126/science.287.5452.460
Ittel S. D., Johnson L. K., Brookhart M.. Late-metal catalysts for ethylene homo-and copolymerization[J]. Chem. Rev., 2000,100(4):1169-1204. doi: 10.1021/cr9804644
Nakamura A., Ito S., Nozaki K.. Coordination-insertion copolymerization of fundamental polar monomers[J]. Chem. Rev., 2009,109(11):5215-5244. doi: 10.1021/cr900079r
Nakamura A., Anselment T. M. J., Claverie J., Goodall B., Jordan R. F., Mecking S., Rieger B., Sen A., van Leeuwen P. W. N. M., Nozaki K.. Ortho-phosphinobenzenesulfonate:a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers[J]. Acc. Chem. Res., 2013,46(7):1438-1449. doi: 10.1021/ar300256h
Johnson L. K., Mecking S., Brookhart M.. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(Ⅱ) catalysts[J]. J. Am. Chem. Soc., 1996,118(1):267-268. doi: 10.1021/ja953247i
Mu H., Pan L., Song D., Li Y.. Neutral nickel catalysts for olefin homo-and copolymerization:Relationships between catalyst structures and catalytic properties[J]. Chem. Rev., 2015,115(22):12091-12137. doi: 10.1021/cr500370f
Guo L., Dai S., Sui X., Chen C.. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization[J]. ACS Catal., 2016,6(1):428-441. doi: 10.1021/acscatal.5b02426
Vaidya T., Klimovica K., LaPointe A. M., Keresztes I., Lobkovsky E. B., Daugulis O., Coates G. W.. Secondary alkene insertion and precision chain-walking:a new route to semicrystalline "polyethylene" from α-olefins by combining two rare catalytic events[J]. J. Am. Chem. Soc., 2014,136(20):7213-7216. doi: 10.1021/ja502130w
Cherian A. E., Rose J. M., Lobkovsky E. B., Coates G.W.. A C2-symmetric, living α-diimine Ni(Ⅱ) catalyst:regioblock copolymers from propylene[J]. J. Am. Chem. Soc., 2005,127(40):13770-13771. doi: 10.1021/ja0540021
McCord E. F., McLain S. J., Nelson L. T. J., Ittel S. D., Tempel D., Killian C. M., Johnson L. K., Brookhart M.. 13C-NMR analysis of α-olefin enchainment in poly(α-olefins) produced with nickel and palladium α-diimine catalysts[J]. Macromolecules, 2007,40(3):410-420. doi: 10.1021/ma061547m
Guo L., Chen C.. (α-diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers[J]. Sci. China Chem., 2015,58(11):1663-1673. doi: 10.1007/s11426-015-5433-7
Guan Z., Cotts P. M., McCord E. F., McLain S. J.. Chain walking:a new strategy to control polymer topology[J]. Science, 1999,283(5410):2059-2062. doi: 10.1126/science.283.5410.2059
Zuideveld M. A., Wehrmann P., Röhr C., Mecking S.. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(Ⅱ) complexes[J]. Angew. Chem. Int. Ed., 2004,43(7):869-873. doi: 10.1002/(ISSN)1521-3773
Mu H. L., Ye W. P., Song D. P., Li Y. S.. Highly active single-component neutral nickel ethylene polymerization catalysts:The influence of electronic effects and spectator ligands[J]. Organometallics, 2010,29(23):6282-6290. doi: 10.1021/om100658j
Hu X., Dai S., Chen C.. Ethylene polymerization by salicylaldimine nickel(Ⅱ) complexes containing a dibenzhydryl moiety[J]. Dalton Trans., 2016,45(4):1496-1503. doi: 10.1039/C5DT04408A
Rhinehart J. L., Brown L. A., Long B. K.. A robust Ni(Ⅱ) α-diimine catalyst for high temperature ethylene polymerization[J]. J. Am. Chem. Soc., 2013,135(44):16316-16319. doi: 10.1021/ja408905t
Dai S., Zhou S., Zhang W., Chen C.. Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization[J]. Macromolecules, 2016,49(23):8855-8862. doi: 10.1021/acs.macromol.6b02104
Dai S., Chen C.. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers[J]. Angew. Chem. Int. Ed., 2016,55(42):13281-13285. doi: 10.1002/anie.201607152
Kenyon P., Mecking S.. Pentafluorosulfanyl substituents in polymerization catalysis[J]. J. Am. Chem. Soc., 2017,139(39):13786-13790. doi: 10.1021/jacs.7b06745
Chen M., Chen C.. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers[J]. ACS Catal., 2017,7(2):1308-1312. doi: 10.1021/acscatal.6b03394
Dai S., Sui X., Chen C.. Highly robust palladium(Ⅱ) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate[J]. Angew. Chem. Int. Ed., 2015,54(34):9948-9953. doi: 10.1002/anie.201503708
Weberski M. P., Chen C., Delferro M., Zuccaccia C., Macchioni A., Marks T. J.. Suppression of β-hydride chain transfer in nickel(Ⅱ)-catalyzed ethylene polymerization via weak fluorocarbon ligand-product interactions[J]. Organometallics, 2012,31(9):3773-3789. doi: 10.1021/om3002735
Popeney C. S., Rheingold A. L., Guan Z.. Nickel(Ⅱ) and palladium(Ⅱ) polymerization catalysts bearing a fluorinated cyclophane ligand:stabilization of the reactive intermediate[J]. Organometallics, 2009,28(15):4452-4463. doi: 10.1021/om900302r
Wang J., Yao E., Chen Z., Ma Y.. Fluorinated nickel(Ⅱ) phenoxyiminato catalysts:exploring the role of fluorine atoms in controlling polyethylene productivities and microstructures[J]. Macromolecules, 2015,48(16):5504-5510. doi: 10.1021/acs.macromol.5b01090
Chen M., Yang B., Chen C.. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes[J]. Angew. Chem. Int. Ed., 2015,54(51):15520-15524. doi: 10.1002/anie.201507274
Zhao M., Chen C.. Accessing multiple catalytically active states in redox-controlled olefin polymerization[J]. ACS Catal., 2017,7(11):7490-7494. doi: 10.1021/acscatal.7b02564
Li M., Wang X., Luo Y., Chen C.. A second-coordination-sphere strategy to modulate nickel-and palladium-catalyzed olefin polymerization and copolymerization[J]. Angew. Chem. Int. Ed., 2017,56(38):11604-11609. doi: 10.1002/anie.v56.38
Zhang D., Chen C.. Influence of polyethylene glycol unit on palladium-and nickel-catalyzed ethylene polymerization and copolymerization[J]. Angew. Chem. Int. Ed., 2017. doi: 10.1002/anie.201708212
Stephenson C. J., McInnis J. P., Chen C., Weberski M. P., Motta A., Delferro M., Marks T. J.. Ni(Ⅱ) phenoxyiminato olefin polymerization catalysis:Striking coordinative modulation of hyperbranched polymer microstructure and stability by a proximate sulfonyl group[J]. ACS Catal., 2014,4(3):999-1003. doi: 10.1021/cs500114b
Xin B. S., Sato N., Tanna A., Oishi Y., Konishi Y., Shimizu F.. Nickel catalyzed copolymerization of ethylene and alkyl acrylates[J]. J. Am. Chem. Soc., 2017,139(10):3611-3614. doi: 10.1021/jacs.6b13051
McInnis J. P., Delferro M., Marks T. J.. Multinuclear group 4 catalysis:Olefin polymerization pathways modified by strong metal-metal cooperative effects[J]. Acc. Chem. Res., 2014,47(8):2545-2557. doi: 10.1021/ar5001633
Chen Z., Yao E., Wang J., Gong X., Ma Y.. Ethylene (co)polymerization by binuclear nickel phenoxyiminato catalysts with cofacial orientation[J]. Macromolecules, 2016,49(23):8848-8854. doi: 10.1021/acs.macromol.6b02078
Johnson L. K., Killian C. M., Brookhart M.. New Pd(Ⅱ)-and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins[J]. J. Am. Chem. Soc., 1995,117(23):6414-6415. doi: 10.1021/ja00128a054
Popeney C., Guan Z.. Ligand electronic effects on late transition metal polymerization catalysts[J]. Organometallics, 2005,24(6):1145-1155. doi: 10.1021/om048988j
Popeney C. S., Guan Z.. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(Ⅱ) α-diimine catalysts[J]. Macromolecules, 2010,43(9):4091-4097. doi: 10.1021/ma100220n
Osichow A., Göttker-Schnetmann I., Mecking S.. Role of electron-withdrawing remote substituents in neutral nickel(Ⅱ) polymerization catalysts[J]. Organometallics, 2013,32(18):5239-5242. doi: 10.1021/om400757f
Göttker-Schnetmann I., Wehrmann P., Röhr C., Mecking S.. Substituent effects in (κ2-N, O)-salicylaldiminato nickel(Ⅱ)-methyl pyridine polymerization catalysts:terphenyls controlling polyethylene microstructures[J]. Organometallics, 2007,26(9):2348-2362. doi: 10.1021/om0611498
Bastero A., Göttker-Schnetmann I., Röhr C., Mecking S.. Polymer microstructure control in catalytic polymerization exclusively by electronic effects of remote substituents[J]. Adv. Synth. Catal., 2007,349(14-15):2307-2316. doi: 10.1002/(ISSN)1615-4169
Saito J., Mitani M., Mohri J., Yoshida Y., Matsui S., Ishii S., Kojoh S., Kashiwa N., Fujita T.. Living polymerization of ethylene with a titanium complex containing two phenoxy-imine chelate ligands[J]. Angew. Chem. Int. Ed., 2001,40(15):2918-2920. doi: 10.1002/(ISSN)1521-3773
Mitani M., Mohri J.-i., Yoshida Y., Saito J., Ishii S., Tsuru K., Matsui S., Furuyama R., Nakano T., Tanaka H., Kojoh S.-i., Matsugi T., Kashiwa N., Fujita T.. Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands[J]. J. Am. Chem. Soc., 2002,124(13):3327-3336. doi: 10.1021/ja0117581
Mitani M., Furuyama R., Mohri J.-i., Saito J., Ishii S., Terao H., Nakano T., Tanaka H., Fujita T.. Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands[J]. J. Am. Chem. Soc., 2003,125(14):4293-4305. doi: 10.1021/ja029560j
Ishii S.-i., Saito J., Mitani M., Mohri J.-i., Matsukawa N., Tohi Y., Matsui S., Kashiwa N., Fujita T.. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands[J]. J. Mol. Catal. A:Chem., 2002,179(1):11-16.
Tian J., Hustad P. D., Coates G. W.. A new catalyst for highly syndiospecific living olefin polymerization:homopolymers and block copolymers from ethylene and propylene[J]. J. Am. Chem. Soc., 2001,123(21):5134-5135. doi: 10.1021/ja0157189
Makio H., Fujita T.. Development and application of FI catalysts for olefin polymerization:unique catalysis and distinctive polymer formation[J]. Acc. Chem. Res., 2009,42(10):1532-1544. doi: 10.1021/ar900030a
Delferro M., Marks T. J.. Multinuclear olefin polymerization catalysts[J]. Chem. Rev., 2011,111(3):2450-2485. doi: 10.1021/cr1003634
Motta A., Fragalà I. L., Marks T. J.. Proximity and cooperativity effects in binuclear d0 olefin polymerization catalysis. Theoretical analysis of structure and reaction mechanism[J]. J. Am. Chem. Soc., 2009,131(11):3974-3984.
Sujith S., Joe D. J., Na S. J., Park Y. W., Choi C. H., Lee B. Y.. Ethylene/polar norbornene copolymerizations by bimetallic salicylaldimine-nickel catalysts[J]. Macromolecules, 2005,38(24):10027-10033. doi: 10.1021/ma051344i
Chen Q., Yu J., Huang J.. Arene-bridged salicylaldimine-based binuclear neutral nickel(Ⅱ) complexes:Synthesis and ethylene polymerization activities[J]. Organometallics, 2007,26(3):617-625. doi: 10.1021/om060778e
Radlauer M. R., Buckley A. K., Henling L. M., Agapie T.. Bimetallic coordination insertion polymerization of unprotected polar monomers:copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts[J]. J. Am. Chem. Soc., 2013,135(10):3784-3787. doi: 10.1021/ja4004816
Wang J., Li H., Guo N., Li L., Stern C. L., Marks T. J.. Covalently linked heterobimetallic catalysts for olefin polymerization[J]. Organometallics, 2004,23(22):5112-5114. doi: 10.1021/om049481b
Kuwabara J., Takeuchi D., Osakada K.. Zr/Zr and Zr/Fe dinuclear complexes with flexible bridging ligands. Preparation by olefin metathesis reaction of the mononuclear precursors and properties as polymerization catalysts[J]. Organometallics, 2005,24(11):2705-2712.
Cano Sierra J., Hüerländer D., Hill M., Kehr G., Erker G., Fröhlich R.. Formation of dinuclear titanium and zirconium complexes by olefin metathesis-catalytic preparation of organometallic catalyst systems[J]. Chem. Eur. J., 2003,9(15):3618-3622. doi: 10.1002/chem.200304789
Chen Z., Zhao X., Gong X., Xu D., Ma Y.. Macrocyclic trinuclear nickel phenoxyimine catalysts for high-temperature polymerization of ethylene and isospecific polymerization of propylene[J]. Macromolecules, 2017,50(17):6561-6568. doi: 10.1021/acs.macromol.7b00996
Wehrmann P., Mecking S.. Highly active binuclear neutral nickel(Ⅱ) catalysts affording high molecular weight polyethylene[J]. Organometallics, 2008,27(7):1399-1408. doi: 10.1021/om700942z
Takeuchi D., Chiba Y., Takano S., Osakada K.. Double-decker-type dinuclear nickel catalyst for olefin polymerization:efficient incorporation of functional co-monomers[J]. Angew. Chem. Int. Ed., 2013,52(48):12536-12540. doi: 10.1002/anie.201307741
Wang C., Friedrich S., Younkin T. R., Li R. T., Grubbs R. H., Bansleben D. A., Day M. W.. Neutral nickel(Ⅱ)-based catalysts for ethylene polymerization[J]. Organometallics, 1998,17(15):3149-3151. doi: 10.1021/om980176y
Connor E. F., Younkin T. R., Henderson J. I., Waltman A. W., Grubbs R. H.. Synthesis of neutral nickel catalysts for ethylene polymerization-the influence of ligand size on catalyst stability[J]. Chem. Commun., 2003,18:2272-2273.
Delferro M., McInnis J. P., Marks T. J.. Ethylene polymerization characteristics of an electron-deficient nickel(Ⅱ) phenoxyiminato catalyst modulated by non-innocent intramolecular hydrogen bonding[J]. Organometallics, 2010,29(21):5040-5049. doi: 10.1021/om100251j
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Ke Gong , Jinghan Liao , Jiangtao Lin , Quan Wang , Zhihua Wu , Liting Wang , Jiali Zhang , Yi Dong , Yourong Duan , Jianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Chenlu Huang , Xinyu Yang , Qingyu Yu , Linhua Zhang , Dunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508