Citation: Xu-Dong Shi, Pei-Jian Sun, Zhi-Hua Gan. Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 712-719. doi: 10.1007/s10118-018-2079-x shu

Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering

  • Corresponding author: Zhi-Hua Gan, zhgan@mail.buct.edu.cn
  • Received Date: 2 September 2017
    Accepted Date: 26 October 2017
    Available Online: 19 January 2018

  • In this study, porous polylactide (PLA) microspheres with different structures were prepared through the multiple emulsion solvent evaporation method. By changing organic solvents (ethyl acetate and chloroform) and adding effervescent salt NH4HCO3 in the inner water phase, microspheres with porous capsular, matrix, microcapsular and multivesicular structures were prepared. The protein encapsulation and release, and the cell growth behavior of porous microspheres were further explored. Under the same inner water phase, microspheres prepared with chloroform had higher protein encapsulation efficiency and less protein release rate as compared with those prepared with ethyl acetate. Cell experiments showed that the relatively rough surface of microspheres prepared with chloroform was more favorable for the cell growth in comparison with the smooth surface of microspheres prepared with ethyl acetate. This study shows a simple and effective method to control the protein release and cell growth behaviors of polymer microspheres by tuning their porous structure.
  • 加载中
    1. [1]

      Couvreur P., BlancoPrieto M. J., Puisieux F., Roques B., Fattal E.. Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides[J]. Adv. Drug Deliv. Rev., 1997,28(1):85-96. doi: 10.1016/S0169-409X(97)00052-5

    2. [2]

      McGlohorn J. B., Grimes L. W., Webster S. S., Burg K. J. L.. Characterization of cellular carriers for use in injectable tissue-engineering composites[J]. J. Biomed. Mater. Res. Part A, 2003,66A(3):441-449. doi: 10.1002/(ISSN)1097-4636

    3. [3]

      Hong Y., Gao C. Y., Xie Y., Gong Y. H., Shen J. C.. Collagen-coated polylactide microspheres as chondrocyte microcarriers[J]. Biomaterials, 2005,26(32):6305-6313. doi: 10.1016/j.biomaterials.2005.03.038

    4. [4]

      Thissen H., Chang K. Y., Tebb T. A., Tsai W. B., Glattauer V., Ramshaw J. A. M., Werkmeister J. A.. Synthetic biodegradable microparticles for articular cartilage tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2006,77A(3):590-598. doi: 10.1002/(ISSN)1552-4965

    5. [5]

      Liu X., Jin X., Ma P. X.. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair[J]. Nat. Mater., 2011,10(5):398-406. doi: 10.1038/nmat2999

    6. [6]

      Lee J. H., Lee C. S., Cho K. Y.. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles[J]. ACS Appl. Mater. Interfaces, 2014,6(19):16493-16497. doi: 10.1021/am505997s

    7. [7]

      Kavas A., Keskin D., Altunbas K., Tezcaner A.. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres:a novel strategy for drug delivery to bone forming cells[J]. Int. J. Pharm., 2016,510(1):168-183. doi: 10.1016/j.ijpharm.2016.06.053

    8. [8]

      Garkhal K., Verma S., Tikoo K., Kumar N.. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2007,82A(3):747-756. doi: 10.1002/(ISSN)1552-4965

    9. [9]

      Lee S. H., Shin H.. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering[J]. Adv. Drug Deliv. Rev., 2007,59(4-5):339-359. doi: 10.1016/j.addr.2007.03.016

    10. [10]

      Luciani A., Coccoli V., Orsi S., Ambrosio L., Netti P. A.. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles[J]. Biomaterials, 2008,29(36):4800-4807. doi: 10.1016/j.biomaterials.2008.09.007

    11. [11]

      Bae S. E., Choi D. H., Han D. K., Park K.. Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells[J]. J. Control. Release, 2010,143(1):23-30. doi: 10.1016/j.jconrel.2009.12.024

    12. [12]

      Le Ray A. M., Chiffoleau S., Iooss P., Grimandi G., Gouyette A., Daculsi G., Merle C.. Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation.Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility[J]. Biomaterials, 2003,24(3):443-449. doi: 10.1016/S0142-9612(02)00357-5

    13. [13]

      Bae S. E., Son J. S., Park K., Han D. K.. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine[J]. J. Control. Release, 2009,133(1):37-43. doi: 10.1016/j.jconrel.2008.09.006

    14. [14]

      Malda J., Frondoza C. G.. Microcarriers in the engineering of cartilage and bone[J]. Trends Biotechnol., 2006,24(7):299-304. doi: 10.1016/j.tibtech.2006.04.009

    15. [15]

      Crotts G., Park T. G.. Preparation of porous and nonporous biodegradable polymeric hollow microspheres[J]. J. Control. Release, 1995,35(2-3):91-105. doi: 10.1016/0168-3659(95)00010-6

    16. [16]

      Hong S. J., Yu H. S., Kim H. W.. Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface[J]. Macromol. Biosci., 2009,9(7):639-645. doi: 10.1002/mabi.v9:7

    17. [17]

      Fan J. B., Song Y. Y., Wang S. T., Jiang L., Zhu M. Q., Guo X. L.. A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer[J]. RSC Adv., 2014,4(2):629-633. doi: 10.1039/C3RA44197K

    18. [18]

      Kim T. K., Yoon J. J., Lee D. S., Park T. G.. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials, 2006,27(2):152-159. doi: 10.1016/j.biomaterials.2005.05.081

    19. [19]

      Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2008,85A(3):747-756. doi: 10.1002/(ISSN)1552-4965

    20. [20]

      Wu D., Wang C., Yang J., Wang H., Han H., Zhang A., Yang Y., Li Q.. Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and mir-519c mediated by porous PLGA microparticle[J]. Mol. Pharm., 2016,13(11):3925-3933. doi: 10.1021/acs.molpharmaceut.6b00702

    21. [21]

      Iqbal M., Zafar N., Fessi H., Elaissari A.. Double emulsion solvent evaporation techniques used for drug encapsulation[J]. Int.J. Pharm., 2015,496(2):173-190. doi: 10.1016/j.ijpharm.2015.10.057

    22. [22]

      Shi X. D., Sun L., Jiang J., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering[J]. Macromol. Biosci., 2009,9(12):1211-1218. doi: 10.1002/mabi.v9:12

    23. [23]

      Shi X. D., Sun L., Gan Z. H.. Formation mechanism of solvent-induced porous PLA microspheres[J]. Acta Polymerica Sinica (in Chinese), 2011(8):866-873.  

    24. [24]

      Wang S. Y., Shi X. D., Gan Z. H., Wang F.. Preparation of PLGA microspheres with different porous morphologies[J]. Chinese J. Polym. Sci., 2015,33(1):128-136. doi: 10.1007/s10118-014-1507-9

    25. [25]

      Odonnell P. B., McGinity J. W.. Preparation of microspheres by the solvent evaporation technique[J]. Adv. Drug Deliv. Rev., 1997,28(1):25-42. doi: 10.1016/S0169-409X(97)00049-5

    26. [26]

      Meng F. T., Ma G. H., Qiu W., Su Z. G.. W/O/W double emulsion technique using ethyl acetate as organic solvent:effects of its diffusion rate on the characteristics of microparticles[J]. J. Control. Release, 2003,91(3):407-416. doi: 10.1016/S0168-3659(03)00273-6

    27. [27]

      Zheng Y. H., Cheng Y. L., Chen J. J., Ding J. X., Li M. Q., Li C., Wang J.C., Chen X. S.. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy[J]. ACS Appl. Mater. Interfaces, 2017,9(4):3487-3496. doi: 10.1021/acsami.6b15245

    28. [28]

      Zhang J., Liu H., Ding J. X., Wu J., Zhuang X. L., Chen X. S., Wang J. C., Yin J. B., Li Z. M.. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration[J]. ACS Biomater. Sci. Eng., 2016,2(9):1471-1482. doi: 10.1021/acsbiomaterials.6b00202

    29. [29]

      Liu D. H., Ding J. X., Xu W. G., Song X. F., Zhuang X. L., Chen X. S.. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery[J]. Acta Polymerica Sinica (in Chinese), 2014(9):1265-1273.  

    30. [30]

      Shen K. X., Li D., Guan J. J., Ding J. X., Wang Z. T., Gu J. K., Liu T. J., Chen X. S.. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle[J]. Nanomed. Nanotechnol. Biol. Med., 2017,13(3):1279-1288. doi: 10.1016/j.nano.2016.12.022

    31. [31]

      Feng X. R., Ding J. X., Gref R., Chen X. S.. Poly(b-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery[J]. Chinese J. Polym. Sci., 2017,35(6):693-699. doi: 10.1007/s10118-017-1932-7

    32. [32]

      Wang J. X., Xu W. G., Ding J. X., Lu S. F., Wang X. Q., Wang C. X., Chen X. S.. Cholesterol-enhanced polylactide-based stereocomplex micelle for effective delivery of doxorubicin[J]. Materials, 2015,8(1):216-230. doi: 10.3390/ma8010216

    33. [33]

      Ho M. L., Fu Y. C., Wang G. J., Chen H. T., Chang J. K., Tsai T. H., Wang C. K.. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite[J]. J. Control. Release, 2008,128(2):142-148. doi: 10.1016/j.jconrel.2008.02.012

    34. [34]

      Sturesson C., Carlfors J.. Incorporation of protein in PLG-microspheres with retention of bioactivity[J]. J. Control. Release, 2000,67(2-3):171-178. doi: 10.1016/S0168-3659(00)00205-4

    35. [35]

      Florence A. T., Whitehill D.. The formulation and stability of multiple emulsions[J]. Int. J. Pharm., 1982,11:277-308. doi: 10.1016/0378-5173(82)90080-1

    36. [36]

      Sah H. K., Smith M. S., Chern R. T.. A novel method of preparing PLGA microcapsules utilizing methylethyl ketone[J]. Pharm. Res., 1996,13(3):360-367. doi: 10.1023/A:1016080123176

    37. [37]

      Schugens C., Laruelle N., Nihant N., Grandfils C., Jerome R., Teyssie P.. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly(L-lactide) microparticles prepared by W/O/W double emulsion-evaporation[J]. J. Control. Release, 1994,32(2):161-176. doi: 10.1016/0168-3659(94)90055-8

    38. [38]

      Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006,27(18):3413-3431. doi: 10.1016/j.biomaterials.2006.01.039

    39. [39]

      Bodmeier R., McGinity J.W.. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method[J]. Int. J. Pharm., 1988,43(1-2):179-186. doi: 10.1016/0378-5173(88)90073-7

    40. [40]

      Kojima R., Yoshida T., Tasaki H., Umejima H., Maeda M., Higashi Y., Watanabe S., Oku N.. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model[J]. Int. J. Pharm., 2015,492(1-2):20-27. doi: 10.1016/j.ijpharm.2015.07.004

    41. [41]

      Wei G. B., Pettway G. J., McCauley L. K., Ma P. X.. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres[J]. Biomaterials, 2004,25(2):345-352. doi: 10.1016/S0142-9612(03)00528-3

    42. [42]

      Jones K. H., Senft J. A.. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide[J]. J. Histochem. Cytochem., 1985,33(1):77-79. doi: 10.1177/33.1.2578146

    43. [43]

      Webb K., Hlady V., Tresco P. A.. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization[J]. J. Biomed. Mater. Res., 1998,41(3):422-430. doi: 10.1002/(ISSN)1097-4636

    44. [44]

      Kim H. K., Chung H. J., Park T. G.. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone[J]. J. Control. Release, 2006,112(2):167-174. doi: 10.1016/j.jconrel.2006.02.004

    45. [45]

      Lee J., Lee K. Y.. Injectable microsphere/hydrogel combination systems for localized protein delivery[J]. Macromol. Biosci., 2009,9(7):671-676. doi: 10.1002/mabi.v9:7

    46. [46]

      Zhang Y., Sun L., Jiang J. A., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradation-induced surface change of polymer microspheres and its influence on cell growth[J]. Polym. Degrad. Stab., 2010,95(8):1356-1364. doi: 10.1016/j.polymdegradstab.2010.01.025

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    3. [3]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    4. [4]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    7. [7]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    8. [8]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    9. [9]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    10. [10]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    11. [11]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    12. [12]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    13. [13]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    14. [14]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    15. [15]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    16. [16]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    17. [17]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    18. [18]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(0)
  • Abstract views(592)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return