Citation: Petra Peer, Martina Polaskova, Pavol Suly. Rheology of Poly(vinyl butyral) Solution Containing Fumed Silica in Correlation with Electrospinning[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 742-748. doi: 10.1007/s10118-018-2077-z shu

Rheology of Poly(vinyl butyral) Solution Containing Fumed Silica in Correlation with Electrospinning

  • Corresponding author: Petra Peer, peer@ih.cas.cz
  • Received Date: 28 August 2017
    Accepted Date: 24 October 2017
    Available Online: 6 February 2018

  • The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)-Mowital B 60H-(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.
  • 加载中
    1. [1]

      Vanangamudi A., Hamzah S., Singh G.. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE)[J]. Chem. Eng. J., 2015,260:801-808. doi: 10.1016/j.cej.2014.08.062

    2. [2]

      Khajavi R., Abbasipour M., Bahador A.. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering[J]. J. Appl. Polym. Sci., 2016,133(3)42883.  

    3. [3]

      Capulli A. K., MacQueen L. A., Sheehy S. P., Parker K. K.. Fibrous scaffolds for building hearts and heart parts[J]. Adv. Drug Deliv. Rev., 2016,96:83-102. doi: 10.1016/j.addr.2015.11.020

    4. [4]

      Sas I., Gorga R. E., Joines J. A., Thoney K. A.. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning[J]. J. Polym. Sci., Part B:Polym. Phys., 2012,50(12):824-845. doi: 10.1002/polb.v50.12

    5. [5]

      Ramakrishna S., Fujihara K., Teo W. E., Lim T. C., Ma Z.. "An introduction to electrospinning and nanofibers", World Scientific Publishing Co[J]. Pte. Ltd., Singapore,, 2005p. 90.  

    6. [6]

      Deitzel J., Kleinmeyer J., Harris D., Tan N. C. B.. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272. doi: 10.1016/S0032-3861(00)00250-0

    7. [7]

      Son W. K., Youk J. H., Lee T. S., Park W. H.. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers[J]. Polymer, 2004,45(9):2959-2966. doi: 10.1016/j.polymer.2004.03.006

    8. [8]

      Han W., Nurwaha D., Li C., Wang X.. Free surface electrospun fibers:the combined effect of processing parameters[J]. Polym. Eng. Sci., 2014,54(1):189-197. doi: 10.1002/pen.v54.1

    9. [9]

      Basu S., Gogoi N., Sharma S., Jassal M., Agrawal A. K.. Role of elasticity in control of diameter of electrospun PAN nanofibers[J]. Fib. Polym., 2013,14(6):950-956. doi: 10.1007/s12221-013-0950-5

    10. [10]

      Gupta D., Jassal M., Agrawal A. K.. Electrospinning of poly(vinyl alcohol)-based boger fluids to understand the role of elasticity on morphology of nanofibers[J]. Ind. Eng. Chem. Res., 2015,54(5):1547-1554. doi: 10.1021/ie504141c

    11. [11]

      Dufficy M. K., Geiger M. T., Bonino C. A., Khan S. A.. Electrospun ultrafine fiber composites containing fumed silica:from solution rheology to materials with tunable wetting[J]. Langmuir, 2015,31(45):12455-12463. doi: 10.1021/acs.langmuir.5b03545

    12. [12]

      Yadav G. D., Yadav A. R.. Atom economical Michael addition of indole with methyl vinyl ketone over novel solid acid catalyst sulfated zirconia on silica tubes[J]. Microporous and Mesoporous Mater., 2014,195:180-190. doi: 10.1016/j.micromeso.2014.03.025

    13. [13]

      Xu H., Li H., Chang J.. Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity[J]. J. Mater. Chem. B, 2013,1(33):4182-4188. doi: 10.1039/c3tb20404a

    14. [14]

      Chen L. J., Liao J. D., Lin S. J., Chuang Y. J., Fu Y. S.. Synthesis and characterization of PVB/silica nanofibers by electrospinning process[J]. Polymer, 2009,50(15):3516-3521. doi: 10.1016/j.polymer.2009.05.063

    15. [15]

      Fong H., Chun I., Reneker D. H.. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592. doi: 10.1016/S0032-3861(99)00068-3

    16. [16]

      Yalcinkaya F.. Experimental study on electrospun polyvinyl butyral nanofibers using a non-solvent system[J]. Fib. Polym., 2015,16(12):2544-2551. doi: 10.1007/s12221-015-5525-1

    17. [17]

      Cassagnau P.. Melt rheology of organoclay and fumed silica nanocomposites[J]. Polymer, 2008,49(9):2183-2196. doi: 10.1016/j.polymer.2007.12.035

    18. [18]

      Shenoy S. L., Bates W. D., Frisch H. L, Wnek G. E.. Role of chain entanglements on fiber formation during electrospinning of polymer solutions:good solvent, non-specific polymer-polymer interaction limit[J]. Polymer, 2005,46(10):3372-3384. doi: 10.1016/j.polymer.2005.03.011

    19. [19]

      Yu J. H., Fridrikh S. V., Rutledge G. C.. The role of elasticity in the formation of electrospun fibers[J]. Polymer, 2006,47(13):4789-4797. doi: 10.1016/j.polymer.2006.04.050

    20. [20]

      Regev O., Vandebril S., Zussman E., Clasen C.. The role of interfacial viscoelasticity in the stabilization of an electrospun jet[J]. Polymer, 2010,51(12):2611-2620. doi: 10.1016/j.polymer.2010.03.061

    21. [21]

      Ehrenstein, G. W.; Riedel, G.; Trawiel, P. "Thermal analysis of plastic:theory and practice", Hanser Publishers, Munich, 2004, p. 368

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    5. [5]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    6. [6]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    7. [7]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    8. [8]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    9. [9]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    10. [10]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(529)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return