Citation: Zhe-Wei Zhang, Jun-Tao Li, Wan-Yuan Wei, Jie Wei, Jin-Bao Guo. A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 776-782. doi: 10.1007/s10118-018-2072-4 shu

A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film

  • Corresponding author: Jin-Bao Guo, guojb@mail.buct.edu.cn
  • Received Date: 28 September 2017
    Accepted Date: 21 October 2017
    Available Online: 8 February 2018

  • A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network (LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.
  • 加载中
    1. [1]

      Kuang M. X., Wang J. X., Jiang L.. Bio-inspired photonic crystals with superwettability[J]. Chem. Soc. Rev, ,45(24):6833-6854. doi: 10.1039/C6CS00562D

    2. [2]

      Xu H., Wu P., Zhu C., Elbaz A., Gu Z. Z.. Photonic crystal for gas sensing[J]. J. Mater. Chem. C, 2013,1(38):6087-6098. doi: 10.1039/c3tc30722k

    3. [3]

      Nucara L., Greco F., Mattoli V.. Electrically responsive photonic crystals:a review[J]. J. Mater. Chem. C, 2015,3(33):8449-8467. doi: 10.1039/C5TC00773A

    4. [4]

      Ge J. P., Yin Y. D.. Responsive photonic crystals[J]. Angew. Chem. Int. Ed., 2011,50(7):1492-522. doi: 10.1002/anie.200907091

    5. [5]

      Schaffner M., England G., Kolle M., Aizenberg J., Vogel N.. Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order[J]. Small, 2015,11(34):4334-4340. doi: 10.1002/smll.v11.34

    6. [6]

      Ding T., Zhao Q. B., Smoukov S. K., Baumberg J. J.. Selectively patterning polymer opal films via microimprint lithography[J]. Adv. Optical. Mater., 2014,2(11)1098. doi: 10.1002/adom.201400327

    7. [7]

      Bao B., Li M. Z., Li , Jiang Y. K., Gu Z. K., Zhang X. Y., Jiang L., Song Y. L.. Quantum dots:patterning fluorescent quantum dot nanocomposites by reactive inkjet printing[J]. Small, 2015,11(14):1649-1654. doi: 10.1002/smll.v11.14

    8. [8]

      Schäfer C. G., Gallei M., Zahn J. T., Engelhardt J., Hellmann G. P., Rehahn M.. Reversible light-, thermos-and mechanoresponsive elastomeric polymer opal films[J]. Chem. Mater, 2013,25(11):2309-2318. doi: 10.1021/cm400911j

    9. [9]

      Lee J. S., Je K., Kim S. H.. Designing multicolored photonic micropatterns through the regioselective thermal compression of inverse opals[J]. Adv. Funct. Mater, 2016,26(25):4587-4594. doi: 10.1002/adfm.201601095

    10. [10]

      Liu J. C., Wan L., Zhang M. B., Jiang K. J., Song K., Wang J. X., Ikeda T., Jiang L.. Lithography:electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach[J]. Adv. Funct. Mater., 2017,27(7)1605221. doi: 10.1002/adfm.v27.7

    11. [11]

      Tian T., Gao N., Gu C., Li J., Wang H., Lan Y., Yin X. P., Li G. T.. Chemically patterned inverse opal created by a selective photolysis modification process[J]. ACS Appl. Mater. Interfaces, 2015,7(34):19516-19525. doi: 10.1021/acsami.5b06757

    12. [12]

      Ohm C., Brehmer M., Zentel R.. Liquid crystalline elastomers as actuators and sensors[J]. Adv. Mater., 2010,22(31):3366-3387. doi: 10.1002/adma.200904059

    13. [13]

      White T. J., Broer D. J.. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nat. Mater., 2015,14(11):1087-1098. doi: 10.1038/nmat4433

    14. [14]

      de Haan L. T., Schenning A. P. H. J., Broer D. J.. Programmed morphing of liquid crystal networks[J]. Polymer, 2014,55(23):5885-5896. doi: 10.1016/j.polymer.2014.08.023

    15. [15]

      Wu G. L., Jiang Y., Xu D., Tang H., Liang X., Li G. T.. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals[J]. Langmuir, 2011,27(4):1505-1509. doi: 10.1021/la1037124

    16. [16]

      Jiang Y., Xu D., Li X. S., Lin C. X., Li W. N., An Q., Tao C. A., Tang H., Li G. T.. Electrothermally driven structural colour based on liquid crystal elastomers[J]. J. Mater. Chem., 2012,22:11943-11949. doi: 10.1039/c2jm30176h

    17. [17]

      Wei W. Y., Shi A. S., Wu T. H., Wei J., Guo J. B.. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks[J]. Soft Matter, 2016,12(41):8534-8541. doi: 10.1039/C6SM01887D

    18. [18]

      Xing H. H., Li J. T., Shi Y., Guo J. B., Wei J.. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer[J]. ACS Appl. Mater. Interfaces, 2016,8(14):9440-9445. doi: 10.1021/acsami.6b01033

    19. [19]

      Xing H. H., Li J. T., Guo J. B., Wei J.. Bio-inspired thermalresponsive inverse opal films with dual structural colors based on liquid crystal elastomer[J]. J. Mater. Chem. C, 2015,3(17):4424-4430. doi: 10.1039/C5TC00548E

    20. [20]

      Zhao J. Q., Liu Y. Y., Yu Y. L.. Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene[J]. J. Mater. Chem. C, 2014,2(48):10262-10267. doi: 10.1039/C4TC01825G

    21. [21]

      An B. K., Kwon S. K., Jung S. D., Park S. Y.. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. J. Am. Chem. Soc., 2002,124(48):14410-14415. doi: 10.1021/ja0269082

    22. [22]

      Lu H. B., Zhang S. N., Ding A. X., Yuan M., Zhang G. Y., Xu W., Zhang G. B., Wang X. H., Qiu L. Z., Yang J. X.. A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures[J]. New J. Chem., 2014,38(8):3429-3433. doi: 10.1039/C4NJ00218K

    23. [23]

      Gierschner J., Park S. Y.. Luminescent distyrylbenzenes:tailoring molecular structure and crystalline morphology[J]. J. Mater. Chem. C, 2013,1(37):5818-5832. doi: 10.1039/c3tc31062k

    24. [24]

      Abadía M. M., Varghese S., Giménez R., Ros M. B.. Multiresponsive luminescent dicyanodistyrylbenzenes and their photochemistry in solution and in bulk[J]. J. Mater. Chem. C, 2016,4(14):2886-2893. doi: 10.1039/C5TC02852C

    25. [25]

      Wang H., Li F., Ravia I., Gao B. R., Li Y. P., Medvedev V., Sun H. B., Tessler N., Ma Y. G.. Cyano-substituted oligo(p-phenylene vinylene) single crystals:a promising laser material[J]. Adv. Funct. Mater., 2011,21(19):3770-3777. doi: 10.1002/adfm.201100783

    26. [26]

      Park S. K., Varghese S., Kim J. H., Yoon S. J., Kwon O. K., An B. K., Gierschner J., Park S. Y.. Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals:an isometric donor-acceptor approach[J]. J. Am. Chem. Soc., 2013,135(12):4757-4764. doi: 10.1021/ja312197b

    27. [27]

      Aparicio F., Cherumukkil S., Ajayaghosh A., Sanchez L.. Colour-tuneable cyano-substituted divinylene arene luminogens as fluorescent π-gelators[J]. Langmuir, 2016,32(1):284-289. doi: 10.1021/acs.langmuir.5b03771

    28. [28]

      Wei R. B., He Y., Wang X. G., Keller P.. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function[J]. Macromol. Rapid Commun., 2014,35(18):1571-1577. doi: 10.1002/marc.v35.18

    29. [29]

      Li J. T., Zhang Z. W., Tian J. J., Li G. Q., Wei J., Guo J. B.. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches:an emerging class of multifunctional switches for dual-mode phototunable liquid crystals[J]. Adv. Opt. Mater., 2017,5(8)1700014. doi: 10.1002/adom.201700014

    30. [30]

      Kim H. J., Whang D. R., Gierschner J., Lee C. H., Park S. Y.. High-contrast red-green-blue tricolor fluorescence switching in bicomponent molecular film[J]. Angew. Chem. Int. Ed., 2015,54(14):4330-4333. doi: 10.1002/anie.201411568

    31. [31]

      Li J. J., Chen Y., Yu J., Cheng N., Liu Y.. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect[J]. Adv. Mater., 2017,29(30)1701905. doi: 10.1002/adma.201701905

    32. [32]

      Broer D. J., Boven J., Mol G. N., Challa G.. In-situ photopolymerization of oriented liquid-crystalline acrylates, 3 Oriented polymer networks from a mesogenic diacrylate[J]. Makromol. Chem., 1989,190(9):2255-2268.  

    33. [33]

      Mei J., Leung N. L., Kwok R. T., Lam J. W., Tang B. Z.. Aggregation-induced emission:together we shine, united we soar[J]. Chem. Rev., 2015,115(21):11718-11940. doi: 10.1021/acs.chemrev.5b00263

    34. [34]

      Su X., Sun X. Q., Wu S. L., Zhang S. F.. Manipulating the emission intensity and lifetime of NaYF4:Yb3+, Er3+ simultaneously by embedding it into CdS photonic crystals[J]. Nanoscale, 2017,9(22):7666-9673. doi: 10.1039/C7NR01172E

    35. [35]

      Shao B., Yang Z. W., Li J., Yang J. Z., Wang Y. D., Qiu J. B., Song Z. G.. Au nanoparticles embedded inverse opal photonic crystals as substrates for upconversion emission enhancement[J]. J. Am. Ceram. Soc., 2017,100(3):988-997. doi: 10.1111/jace.14623

    36. [36]

      Li H., Xu Z. H., Bao B., Sun N., Song Y. L.. Improving the luminescence performance of quantum dot-based photonic crystals for white-light emission[J]. J. Mater. Chem. C, 2015,4(1):39-44.  

    37. [37]

      Li J., Yang Z., Shao B., Yang J. Z., Wang Y. D., Qiu J. B., Song Z. G., French R. H.. Photoluminescence enhancement of SiO2-coated LaPO4:Eu3+ inverse opals by surface plasmon resonance of Ag nanoparticles[J]. J. Am. Ceram. Soc., 2016,99(10):3330-3335. doi: 10.1111/jace.14333

    38. [38]

      Wang Q., Qiu J. B., Song Z. G., Yang Z. W., Yin Z. Y., Zhou D. C., Wang S. Q.. Enhancement of Tb-Yb quantum cutting emission by inverse opal photonic crystals[J]. Opt. Mater., 2016,54:229-233. doi: 10.1016/j.optmat.2016.01.058

    39. [39]

      Huang H., Chen J. B., Yu Y., Shi Z. M., Möhwald H., Zhang G.. Controlled gradient colloidal photonic crystals and their optical properties[J]. Colloid Surface A, 2013,428(13):9-17.  

    40. [40]

      Kunzelman J., Kinami M., Crenshaw B. R., Protasiewicz J. D., Weder C.. Oligo(p-phenylene vinylene)s as a "New" class of piezochromic fluorophores[J]. Adv. Mater., 2008,20(1):119-122. doi: 10.1002/(ISSN)1521-4095

  • 加载中
    1. [1]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    2. [2]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    3. [3]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    4. [4]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    5. [5]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    6. [6]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    7. [7]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    13. [13]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    14. [14]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    15. [15]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    16. [16]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    19. [19]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return