Citation: Meng-Jiao Cheng, Qian Zhang, Feng Shi. Macroscopic Supramolecular Assembly and Its Applications[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 306-321. doi: 10.1007/s10118-018-2069-z shu

Macroscopic Supramolecular Assembly and Its Applications

  • Corresponding author: Feng Shi, shi@mail.buct.edu.cn
  • Received Date: 30 September 2017
    Accepted Date: 17 October 2017
    Available Online: 20 December 2017

  • Macroscopic supramolecular assembly (MSA) has been a recent progress in supramolecular chemistry. MSA mainly focuses on studies of the building blocks with a size beyond ten micrometers and the non-covalent interactions between these interactive building blocks to form ordered structures. MSA is essential to realize the concept of "self-assembly at all scales" by bridging most supramolecular researches at molecular level and at macroscopic scale. This review summaries the development of MSA, the basic design principle and related strategies to achieve MSA and potential applications. Correspondingly, we try to elucidate the correlations and differences between "macroscopic assembly" and MSA based on intermolecular interactions; the design principle and the underlying assembly mechanism of MSA are proposed to understand the reported MSA behaviors; to demonstrate further applications of MSA, we introduce some methods to improve the ordered degree of the assembled structures from the point of precise assembly and thus envision some possible fields for the use of MSA.
  • 加载中
    1. [1]

      Steed, J. W. and Atwood, J. L., "Supramolecular Chemistry, Second Edition", Wiley VCH, Weiheim, 2009

    2. [2]

      Vögtle, F., "Supramolecular Chemistry" (in Chinese), Jilin University Press, Changchun, 1995

    3. [3]

      Zhang X.. Surface molecular engineering of polymer multilayer films[J]. Acta Polymerica Sinica (in Chinese), 2007(10):905-912.  

    4. [4]

      Service R. F.. How far can we push chemical self-assembly?[J]. Science, 2205,309(5731):95-95.  

    5. [5]

      Yang L., Tan X., Wang Z., Zhang X.. Supramolecular polymers:historical development, preparation, characterization, and functions[J]. Chem. Rev., 2015,115(15):7196-7239. doi: 10.1021/cr500633b

    6. [6]

      Yan D. Y., Zhou Y. F., Hou J.. Supramolecular self-assembly of macroscopic tubes[J]. Science, 2004,303(5654):65-67. doi: 10.1126/science.1090763

    7. [7]

      Tee B. K., Wang C., Allen R., Bao Z.. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications[J]. Nat. Nanotechnol., 2012,7(12):825-832. doi: 10.1038/nnano.2012.192

    8. [8]

      Liu Y. Q., Wang T. Y., Huan Y., Li Z. B., He G. W., Liu M. H.. Self-assembled supramolecular nanotube yarn[J]. Adv. Mater., 2013,25(41):5875-5879. doi: 10.1002/adma.201302345

    9. [9]

      Stoddart J. F.. Thither supramolecular chemistry? Nat[J]. Chem., 2009,1(1):14-15.  

    10. [10]

      Persch E., Dumele O., Diederich F.. Molecular recognition in chemical and biological systems[J]. Angew. Chem. Int. Ed., 2015,46(18):3290-3327.

    11. [11]

      Paleos C. M., Pantos A.. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes[J]. Acc. Chem. Res., 2014,47(5):1475-1482. doi: 10.1021/ar4002679

    12. [12]

      Langton M. J., Beer P. D.. Rotaxane and catenane host structures for sensing charged guest species[J]. Acc. Chem. Res., 2014,47(7):1935-1949. doi: 10.1021/ar500012a

    13. [13]

      Mattia E., Otto S.. Supramolecular systems chemistry[J]. Nat. Nanotechnol., 2015,10(2):111-119. doi: 10.1038/nnano.2014.337

    14. [14]

      Zhao Y., Sakai F., Su L., Liu Y. J., Wei K. C., Chen G. S., Jiang M.. Progressive macromolecular self-assembly:from biomimetic chemistry to bio-inspired materials[J]. Adv. Mater., 2013,25(37):5215-5256. doi: 10.1002/adma.201302215

    15. [15]

      He Z., Jiang W., Schalley C.. Integrative self-sorting:a versatile strategy for the construction of complex supramolecular architecture[J]. Chem. Soc. Rev., 2015,44(3):779-789. doi: 10.1039/C4CS00305E

    16. [16]

      Wang C., Wang Z., Zhang X.. Amphiphilic building blocks for self-assembly:from amphiphiles to supra-amphiphiles[J]. Acc. Chem. Res., 2012,45(4):608-618. doi: 10.1021/ar200226d

    17. [17]

      Bowden N., Terfort A., Carbeck J., Whitesides G. M.. Self-assembly of mesoscale objects into ordered two-dimensional arrays[J]. Science, 1997,276(5310):233-235. doi: 10.1126/science.276.5310.233

    18. [18]

      Bowden N. B., Weck M., Choi I. S., Whitesides G. M.. Molecule-mimetic chemistry and mesoscale self-assembly[J]. Acc. Chem. Res., 2001,34(3):231-238. doi: 10.1021/ar0000760

    19. [19]

      Birte S., Manuel T., Maike B., Armido S., De Cola L.. Dynamic microcrystal assembly by nitroxide exchange reactions[J]. Angew. Chem. Int. Ed., 2010,49(38):6881-6884. doi: 10.1002/anie.201002851

    20. [20]

      Cheng M. J., Shi F., Li J. S., Lin Z. F., Jiang C., Xiao M., Zhang L. Q., Yang W. T., Nishi T.. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating[J]. Adv. Mater., 2014,26(19):3009-3013. doi: 10.1002/adma.201305177

    21. [21]

      Harada A., Kobayashi R., Takashima Y., Hashidzume A., Yamaguchi H.. Macroscopic self-assembly through molecular recognition[J]. Nat. Chem., 2011,3(1):34-37. doi: 10.1038/nchem.893

    22. [22]

      Mulder A., Auletta T., Sartori A., Del C. S., Casnati A., Ungaro R., Husken J, Reinhoudt D. N.. Divalent binding of a bis(adamantyl)-functionalized calix[4]arene to β-cyclodextrinbased hosts:an experimental and theoretical study on multivalent bining in solution and at self-assembled monolayers[J]. J. Am. Chem. Soc., 2004,126(21):6627-6636. doi: 10.1021/ja0317168

    23. [23]

      Huskens J., Mulder A., Auletta T., Nijhuis C. A., Ludden M. J., Reinhoudt D. N.. A model for describing the thermodynamics of multivalent host-guest interactions at interfaces[J]. J. Am. Chem. Soc., 2004,126(21):6784-6797. doi: 10.1021/ja049085k

    24. [24]

      Fasting C., Schalley C. A., Weber M., Seitz O., Hecht S., Koksch B., Dernedde J., Graf C., Knapp E. W., Haag R.. Multivalency as a chemical organization and action principle[J]. Angew. Chem. Int. Ed., 2012,51(42):10472-10498. doi: 10.1002/anie.201201114

    25. [25]

      Whitesides G. M., Grzybowski B.. Self-assembly at all scales[J]. Science, 2002,295(5564):2418-2421. doi: 10.1126/science.1070821

    26. [26]

      Whitesides G. M., Boncheva M.. Supramolecular chemistry and self-assembly special feature:beyond molecules:self-assembly of mesoscopic andmacroscopic components[J]. Proc. Natl. Acad. Sci. U S A, 2002,99(8):4769-4774. doi: 10.1073/pnas.082065899

    27. [27]

      Goodsell D. S. "Bionanotechnology:Lessons from Nature", Wiley VCH, Weiheim, 2004

    28. [28]

      Gracias D. H., Tien J., Breen T. L., Hsu C., Whitesides G. M.. Forming electrical networks in three dimensions by self-assembly[J]. Science, 2000,289(5482):1170-1172. doi: 10.1126/science.289.5482.1170

    29. [29]

      Lewandowski E. P., Bernate J. A., Tseng A., Searson P. C., Stebe K. J.. Oriented assembly of anisotropic particles by capillary interactions[J]. Soft Matter, 2009,5(4):886-890. doi: 10.1039/B812257A

    30. [30]

      Zhang Z. K., Pfleiderer P., Schofield A. B., Clasen C., Vermant J.. Synthesis and directed self-sssembly of patterned anisometric polymeric particles[J]. J. Am. Chem. Soc., 2011,133(3):392-395. doi: 10.1021/ja108099r

    31. [31]

      Wang J., Wang Y., Sheiko S., Betts D. E., de Simonec J.. Tuning multiphase amphiphilic rods to direct self-sssembly[J]. J. Am. Chem. Soc., 2011,134(13):5801-5806.  

    32. [32]

      Liu M., Zhang J. G., Lv Y., Xia S. H.. Self-assembly of micro-parts onto Si substrates at liquid-liquid interface[J]. Chin. Phys. Lett., 2006,23(1):42-44. doi: 10.1088/0256-307X/23/1/013

    33. [33]

      Zrínyi M.. Intelligent polymer gels controlled by magnetic fields[J]. Colloid. Polym. Sci., 2000,278(278):98-103.  

    34. [34]

      Xu F., Wu C., Rengarajan V., Finley T. D., Keles H. O., Sung Y., Li B. Q., Gurkan U. A., Demirci U.. Three-dimensional magnetic assembly of microscale hydrogels[J]. Adv. Mater., 2011,23(37):4254-4260. doi: 10.1002/adma.201101962

    35. [35]

      Love J. C., Urbach A. R., Prentiss M., Whitesides G. M.. Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions[J]. J. Am. Chem. Soc., 2003,125(42):12696-12697. doi: 10.1021/ja037642h

    36. [36]

      Tasoglu S., Kavaz D., Gurkan U. A., Guven S., Chen P., Zheng R. L., Demirci U.. Paramagnetic levitational assembly of hydrogels[J]. Adv. Mater., 2013,25(8):1137-1143. doi: 10.1002/adma.201200285

    37. [37]

      Herlihy K. P., Nunes J., de Simone J. M.. Electrically driven alignment and crystallization of unique anisotropic polymer particles[J]. Langmuir, 2008,24(16):8421-8426. doi: 10.1021/la801250g

    38. [38]

      Grzybowski B. A., Winkleman A., Wiles J. A., Brumer Y., Whitesides G. M.. Electrostatic self-assembly of macroscopic crystals using contact electrification[J]. Nat. Mater., 2003,2(2):241-245.  

    39. [39]

      Helm C. A., Israelachvili J. N., McGuiggan P. M.. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers[J]. Science, 1989,246(4932):919-922. doi: 10.1126/science.2814514

    40. [40]

      Marra J., Israelachvili J.. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions[J]. Biochemistry, 1985,24(17):4608-4618. doi: 10.1021/bi00338a020

    41. [41]

      Cademartiri L., Bishop K. J. M.. Programmable self-assembly[J]. Nat. Mater., 2015,14(1):2-9. doi: 10.1038/nmat4184

    42. [42]

      Wang Y., Breed D. R., Manoharan V. N., Feng L., Hollingsworth A. D., Weck M., Pine D. J.. Colloids with valence and specific directional bonding[J]. Nature, 2012,491(7422):51-55. doi: 10.1038/nature11564

    43. [43]

      Hashidzume A., Zheng Y., Takashima Y., Yamaguchi H., Harada A.. Macroscopic self-sssembly based on molecular recognition:effect of linkage between aromatics and the polyacrylamide gel scaffold, amide versus ester[J]. Macromolecules, 2013,46(5):1939-1947. doi: 10.1021/ma302344x

    44. [44]

      Yamaguchi H, Kobayashi R, Takashima Takashima, Hashidzume A., Harada A.. Self-assembly of gels through molecular recognition of cyclodextrins:shape selectivity for linear and cyclic guest molecules[J]. Macromolecules, 2011,44(8):2395-2399. doi: 10.1021/ma200398y

    45. [45]

      Zheng Y. T., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Macroscopic observations of molecular recognition:discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with β-cyclodextrin[J]. Langmuir, 2011,27(22):13790-13795. doi: 10.1021/la2034142

    46. [46]

      Kobayashi Y., Takashima Y., Hashidzume A., Yamaguchi H., Harada A.. Reversible self-assembly of gels through metal-ligand interactions[J]. Sci. Rep., 2013,3(7435)1243. doi: 10.1038/srep01243

    47. [47]

      Nakahata M., Takashima Y., Harada A.. Redox-responsive macroscopic gel assembly based on discrete dual interactions[J]. Angew. Chem. Int. Ed., 2014,53(14):3617-3621. doi: 10.1002/anie.v53.14

    48. [48]

      Nakahata M., Takashima Y., Hashidzume A., Harada A.. Macroscopic self-assembly based on complementary interaction between nucleobase pairs[J]. Chem. Eur. J., 2015,21(7):2770-2774. doi: 10.1002/chem.201404674

    49. [49]

      Yamaguchi H., Kobayashi Y., Kobayashi R., Takashima Y., Hashidzume A., Harada A.. Photoswitchable gel assembly based on molecular recognition[J]. Nat. Commun., 2012,3(48)603. doi: 10.1038/ncomms1617

    50. [50]

      Zheng Y. T., Akihito H., Harada A.. pH-responsive self-assembly by molecular recognition on a macroscopic scale[J]. Macromol. Rapid. Commun., 2013,34(13):1062-1066. doi: 10.1002/marc.v34.13

    51. [51]

      Zheng Y. T., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Temperature-sensitive macroscopic assembly based on molecular recognition[J]. ACS Macro. Lett., 2012,1(8):1083-1085. doi: 10.1021/mz300338d

    52. [52]

      Zheng Y., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Switching of macroscopic molecular recognition selectivity using a mixed solvent system[J]. Nat. Commun., 2012,3831. doi: 10.1038/ncomms1841

    53. [53]

      Nakahata M., Mori S., Takashima Y., Hashidzume A., Yamaguchi H., Harada A.. pH-and sugar-responsive gel assemblies based on boronate-catechol interactions[J]. ACS Macro. Lett., 2014,3(4):337-340. doi: 10.1021/mz500035w

    54. [54]

      Qi H., Ghodousi M., Du Y., Grun C., Bae H., Yin P.. DNA-directed self-assembly of shape-controlled hydrogels[J]. Nat. Commun., 2013,42275. doi: 10.1038/ncomms3275

    55. [55]

      Ma C. X., Li T. F., Zhao Q., Yang X. X., Wu J. J., Luo Y. W., Xie T.. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels[J]. Adv. Mater., 2014,26(32):5665-5669. doi: 10.1002/adma.201402026

    56. [56]

      Lu H. X., Tang L. M.. Macroscopic self-assembly of organogels through quadruple hydrogel bonding[J]. Acta Polymerica Sinica (in Chinese), 2013(10):1241-1246.  

    57. [57]

      Yuan W. Y., Lu Z. S., Li C. M.. Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers:amphoteric properties, ultrahigh loading capacity and pH-responsiveness[J]. J. Mater. Chem., 2012,22(18):9351-9357. doi: 10.1039/c2jm30834g

    58. [58]

      Shen L. Y., Fu J. H., Fu K., Picart C., Ji J.. Humidity responsive asymmetric free-standing multilayered film[J]. Langmuir, 2010,26(22):16634-16637. doi: 10.1021/la102928g

    59. [59]

      Yoo P. J., Zacharia N. S., Doh J., Nam K. T., Belcher A. M., Hammond P. T.. Controlling surface mobility in interdiffusing polyelectrolyte multilayers[J]. ACS Nano, 2008,2(3):561-571. doi: 10.1021/nn700404y

    60. [60]

      Wang X., Liu F., Zheng X. W., Sun J. Q.. Water-enabled self-healing of polyelectrolyte multilayer coatings[J]. Angew. Chem. Int. Ed., 2011,50(48):11378-11381. doi: 10.1002/anie.v50.48

    61. [61]

      Garza J. M., Schaaf P., Muller S., Ball V., Stoltz J., Voegel J., Lavalle P.. Multicompartment films made of alternate polyelectrolyte multilayers of exponential and linear growth[J]. Langmuir, 2004,20(17):7298-7302. doi: 10.1021/la049106o

    62. [62]

      Cheng M. J., Gao H. T., Zhang Y. J., Wolfgang T., Chen J. F., Shi F., Knoll W.. Combining magnetic field induced locomotion and supramolecular interaction to micromanipulate glass fibers:toward assembly of complex structures at mesoscale[J]. Langmuir, 2011,27(11):6559-6564. doi: 10.1021/la201399w

    63. [63]

      Wang R. M., Xie T.. Shape memory-and hydrogen bonding-based strong reversible adhesive system[J]. Langmuir, 2010,26(5):2999-3002. doi: 10.1021/la9046403

    64. [64]

      Wang R. M., Xie T.. Macroscopic evidence of strong cation-pi interactions in a synthetic polymer system[J]. Chem. Commun., 2010,46(8):1341-1343. doi: 10.1039/b916204f

    65. [65]

      Ahn Y., Jang Y., Selvapalam N., Yun G., Kim K.. Supramolecular velcro for reversible underwater adhesion[J]. Angew. Chem. Int. Ed., 2013,52(11):3140-3144. doi: 10.1002/anie.201209382

    66. [66]

      Cheng M. J., Ju G. N., Zhang Y. W., Song M. M., Zhang Y. J., Shi F.. Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy[J]. Small, 2014,10(19):3907-3911. doi: 10.1002/smll.201400922

    67. [67]

      Xiao M., Xian Y. M., Shi F.. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition[J]. Angew. Chem. Int. Ed., 2015,54(31):8952-8956. doi: 10.1002/anie.201502349

    68. [68]

      Akram R., Cheng M.; J., Guo F. L., Saleem I., Shi F.. Toward understanding whether interactive surface area could direct ordered macroscopic supramolecular self-assembly[J]. Langmuir, 2016,32(15):3617-3622. doi: 10.1021/acs.langmuir.6b00115

    69. [69]

      Ju G. N., Guo F. L., Zhang Q., Kuehne A. J. C., Cheng M. J., Shi F.. Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly[J]. Adv. Mater., 201729. doi: 10.1002/adma.201702444

    70. [70]

      Murphy S. V., Atala A.. 3D bioprinting of tissues and organs[J]. Nat. Biotechnol., 2014,32(8):773-785. doi: 10.1038/nbt.2958

    71. [71]

      Wylie R. G., Ahsan S., Aizawa Y., Maxwell K. L., Morshead C. M., Shoichet M. S.. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels[J]. Nat. Mater., 2011,10(10):799-806. doi: 10.1038/nmat3101

    72. [72]

      Persch E., Dumele O., Diederich F.. Molecular recognition in chemical and biological systems[J]. Angew. Chem. Int. Ed., 2015,54(11):3290-3327. doi: 10.1002/anie.201408487

    73. [73]

      Jurin F. E., Buron C. C., Martin N., Filiâtre C.. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film:influence of polyelectrolyte solution composition[J]. J. Colloid. Interface Sci., 2014,431:64-70. doi: 10.1016/j.jcis.2014.06.005

    74. [74]

      Shin S., Lim S., Kim Y., Kim T., Choi T. L., Lee M.. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction[J]. J. Am. Chem. Soc., 2013,135(6):2156-2159. doi: 10.1021/ja400160j

    75. [75]

      Anderson C. A., Jones A. R., Briggs E. M., Novitsky E. J., Kuykendall D. W., Sottos N. R., Zimmerman S. C.. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion[J]. J. Am. Chem. Soc., 2013,135(19):7288-7295. doi: 10.1021/ja4005283

    76. [76]

      Livnah O., Bayer E. A., Wilchek M., Sussman J. L.. Three-dimensional structures of avidin and the avidin-biotin complex[J]. Proc. Natl. Acad. Sci. U S A, 1993,90(11):5076-5080. doi: 10.1073/pnas.90.11.5076

    77. [77]

      Li C., Faulknerjones A., Dun A. R., Jin J., Chen P., Xing Y. Z., Yang Z. Q., Li Z. B., Shu W. M., Liu D. S.. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting[J]. Angew. Chem., 2015,54(13):3957-3961. doi: 10.1002/anie.201411383

    78. [78]

      Han Y. L., Yang Y. S., Liu S. B., Wu J. H., Chen Y. M., Lu T. J., Xu F.. Directed self-assembly of microscale hydrogels by electrostatic interaction[J]. Biofabrication, 2013,5(3)35004. doi: 10.1088/1758-5082/5/3/035004

    79. [79]

      Li Y. H., Huang G. Y., Zhang X. H., Li B. Q., Chen Y. M., Lu T. L., Lu T. J., Xu F.. Magnetic hydrogels and their potential biomedical applications[J]. Adv. Funct. Mater., 2013,23(6):660-672. doi: 10.1002/adfm.v23.6

    80. [80]

      Xu F., Finley T., Turkaydin M., Sung Y., Gurkan U. A., Yavuz A. S., Guldiken R., Demirci U.. The assembly of cell-encapsulating microscale hydrogels using acoustic waves[J]. Biomaterials, 2011,32(31):7847-7855. doi: 10.1016/j.biomaterials.2011.07.010

    81. [81]

      Cheng M. J., Liu Q., Xian Y. M., Shi F.. Programmable macroscopic supramolecular assembly through combined molecular recognition and magnetic field-assisted localization[J]. ACS Appl. Mater. Interfaces, 2014,6(10):7572-7578. doi: 10.1021/am500910y

    82. [82]

      Cheng M. J., Wang Y., Yu L. L., Su H. J., Han W. D., Lin Z. F., Li J. S., Hao H. J., Tong C., Li X. L., Shi F.. Macroscopic supramolecular assembly to fabricate 3D ordered structures:towards potential tissue scaffolds with targeted modification[J]. Adv. Funct. Mater., 2015,25(44):6851-6857. doi: 10.1002/adfm.201503366

    83. [83]

      Zhang Y. W., Cheng M. J., Wang Y., Shi F.. Constructing a multiplexed DNA pattern by combining precise magnetic manipulation and DNA-driven assembly[J]. Langmuir, 2017. doi: 10.1021/acs.langmuir.7b02608

  • 加载中
    1. [1]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    2. [2]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    5. [5]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    6. [6]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    7. [7]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    10. [10]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    11. [11]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    12. [12]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    13. [13]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    14. [14]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    15. [15]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    18. [18]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    19. [19]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    20. [20]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return