Macroscopic Supramolecular Assembly and Its Applications
- Corresponding author: Feng Shi, shi@mail.buct.edu.cn
Citation:
Meng-Jiao Cheng, Qian Zhang, Feng Shi. Macroscopic Supramolecular Assembly and Its Applications[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 306-321.
doi:
10.1007/s10118-018-2069-z
Steed, J. W. and Atwood, J. L., "Supramolecular Chemistry, Second Edition", Wiley VCH, Weiheim, 2009
Vögtle, F., "Supramolecular Chemistry" (in Chinese), Jilin University Press, Changchun, 1995
Zhang X.. Surface molecular engineering of polymer multilayer films[J]. Acta Polymerica Sinica (in Chinese), 2007(10):905-912.
Service R. F.. How far can we push chemical self-assembly?[J]. Science, 2205,309(5731):95-95.
Yang L., Tan X., Wang Z., Zhang X.. Supramolecular polymers:historical development, preparation, characterization, and functions[J]. Chem. Rev., 2015,115(15):7196-7239. doi: 10.1021/cr500633b
Yan D. Y., Zhou Y. F., Hou J.. Supramolecular self-assembly of macroscopic tubes[J]. Science, 2004,303(5654):65-67. doi: 10.1126/science.1090763
Tee B. K., Wang C., Allen R., Bao Z.. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications[J]. Nat. Nanotechnol., 2012,7(12):825-832. doi: 10.1038/nnano.2012.192
Liu Y. Q., Wang T. Y., Huan Y., Li Z. B., He G. W., Liu M. H.. Self-assembled supramolecular nanotube yarn[J]. Adv. Mater., 2013,25(41):5875-5879. doi: 10.1002/adma.201302345
Stoddart J. F.. Thither supramolecular chemistry? Nat[J]. Chem., 2009,1(1):14-15.
Persch E., Dumele O., Diederich F.. Molecular recognition in chemical and biological systems[J]. Angew. Chem. Int. Ed., 2015,46(18):3290-3327.
Paleos C. M., Pantos A.. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes[J]. Acc. Chem. Res., 2014,47(5):1475-1482. doi: 10.1021/ar4002679
Langton M. J., Beer P. D.. Rotaxane and catenane host structures for sensing charged guest species[J]. Acc. Chem. Res., 2014,47(7):1935-1949. doi: 10.1021/ar500012a
Mattia E., Otto S.. Supramolecular systems chemistry[J]. Nat. Nanotechnol., 2015,10(2):111-119. doi: 10.1038/nnano.2014.337
Zhao Y., Sakai F., Su L., Liu Y. J., Wei K. C., Chen G. S., Jiang M.. Progressive macromolecular self-assembly:from biomimetic chemistry to bio-inspired materials[J]. Adv. Mater., 2013,25(37):5215-5256. doi: 10.1002/adma.201302215
He Z., Jiang W., Schalley C.. Integrative self-sorting:a versatile strategy for the construction of complex supramolecular architecture[J]. Chem. Soc. Rev., 2015,44(3):779-789. doi: 10.1039/C4CS00305E
Wang C., Wang Z., Zhang X.. Amphiphilic building blocks for self-assembly:from amphiphiles to supra-amphiphiles[J]. Acc. Chem. Res., 2012,45(4):608-618. doi: 10.1021/ar200226d
Bowden N., Terfort A., Carbeck J., Whitesides G. M.. Self-assembly of mesoscale objects into ordered two-dimensional arrays[J]. Science, 1997,276(5310):233-235. doi: 10.1126/science.276.5310.233
Bowden N. B., Weck M., Choi I. S., Whitesides G. M.. Molecule-mimetic chemistry and mesoscale self-assembly[J]. Acc. Chem. Res., 2001,34(3):231-238. doi: 10.1021/ar0000760
Birte S., Manuel T., Maike B., Armido S., De Cola L.. Dynamic microcrystal assembly by nitroxide exchange reactions[J]. Angew. Chem. Int. Ed., 2010,49(38):6881-6884. doi: 10.1002/anie.201002851
Cheng M. J., Shi F., Li J. S., Lin Z. F., Jiang C., Xiao M., Zhang L. Q., Yang W. T., Nishi T.. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating[J]. Adv. Mater., 2014,26(19):3009-3013. doi: 10.1002/adma.201305177
Harada A., Kobayashi R., Takashima Y., Hashidzume A., Yamaguchi H.. Macroscopic self-assembly through molecular recognition[J]. Nat. Chem., 2011,3(1):34-37. doi: 10.1038/nchem.893
Mulder A., Auletta T., Sartori A., Del C. S., Casnati A., Ungaro R., Husken J, Reinhoudt D. N.. Divalent binding of a bis(adamantyl)-functionalized calix[4]arene to β-cyclodextrinbased hosts:an experimental and theoretical study on multivalent bining in solution and at self-assembled monolayers[J]. J. Am. Chem. Soc., 2004,126(21):6627-6636. doi: 10.1021/ja0317168
Huskens J., Mulder A., Auletta T., Nijhuis C. A., Ludden M. J., Reinhoudt D. N.. A model for describing the thermodynamics of multivalent host-guest interactions at interfaces[J]. J. Am. Chem. Soc., 2004,126(21):6784-6797. doi: 10.1021/ja049085k
Fasting C., Schalley C. A., Weber M., Seitz O., Hecht S., Koksch B., Dernedde J., Graf C., Knapp E. W., Haag R.. Multivalency as a chemical organization and action principle[J]. Angew. Chem. Int. Ed., 2012,51(42):10472-10498. doi: 10.1002/anie.201201114
Whitesides G. M., Grzybowski B.. Self-assembly at all scales[J]. Science, 2002,295(5564):2418-2421. doi: 10.1126/science.1070821
Whitesides G. M., Boncheva M.. Supramolecular chemistry and self-assembly special feature:beyond molecules:self-assembly of mesoscopic andmacroscopic components[J]. Proc. Natl. Acad. Sci. U S A, 2002,99(8):4769-4774. doi: 10.1073/pnas.082065899
Goodsell D. S. "Bionanotechnology:Lessons from Nature", Wiley VCH, Weiheim, 2004
Gracias D. H., Tien J., Breen T. L., Hsu C., Whitesides G. M.. Forming electrical networks in three dimensions by self-assembly[J]. Science, 2000,289(5482):1170-1172. doi: 10.1126/science.289.5482.1170
Lewandowski E. P., Bernate J. A., Tseng A., Searson P. C., Stebe K. J.. Oriented assembly of anisotropic particles by capillary interactions[J]. Soft Matter, 2009,5(4):886-890. doi: 10.1039/B812257A
Zhang Z. K., Pfleiderer P., Schofield A. B., Clasen C., Vermant J.. Synthesis and directed self-sssembly of patterned anisometric polymeric particles[J]. J. Am. Chem. Soc., 2011,133(3):392-395. doi: 10.1021/ja108099r
Wang J., Wang Y., Sheiko S., Betts D. E., de Simonec J.. Tuning multiphase amphiphilic rods to direct self-sssembly[J]. J. Am. Chem. Soc., 2011,134(13):5801-5806.
Liu M., Zhang J. G., Lv Y., Xia S. H.. Self-assembly of micro-parts onto Si substrates at liquid-liquid interface[J]. Chin. Phys. Lett., 2006,23(1):42-44. doi: 10.1088/0256-307X/23/1/013
Zrínyi M.. Intelligent polymer gels controlled by magnetic fields[J]. Colloid. Polym. Sci., 2000,278(278):98-103.
Xu F., Wu C., Rengarajan V., Finley T. D., Keles H. O., Sung Y., Li B. Q., Gurkan U. A., Demirci U.. Three-dimensional magnetic assembly of microscale hydrogels[J]. Adv. Mater., 2011,23(37):4254-4260. doi: 10.1002/adma.201101962
Love J. C., Urbach A. R., Prentiss M., Whitesides G. M.. Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions[J]. J. Am. Chem. Soc., 2003,125(42):12696-12697. doi: 10.1021/ja037642h
Tasoglu S., Kavaz D., Gurkan U. A., Guven S., Chen P., Zheng R. L., Demirci U.. Paramagnetic levitational assembly of hydrogels[J]. Adv. Mater., 2013,25(8):1137-1143. doi: 10.1002/adma.201200285
Herlihy K. P., Nunes J., de Simone J. M.. Electrically driven alignment and crystallization of unique anisotropic polymer particles[J]. Langmuir, 2008,24(16):8421-8426. doi: 10.1021/la801250g
Grzybowski B. A., Winkleman A., Wiles J. A., Brumer Y., Whitesides G. M.. Electrostatic self-assembly of macroscopic crystals using contact electrification[J]. Nat. Mater., 2003,2(2):241-245.
Helm C. A., Israelachvili J. N., McGuiggan P. M.. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers[J]. Science, 1989,246(4932):919-922. doi: 10.1126/science.2814514
Marra J., Israelachvili J.. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions[J]. Biochemistry, 1985,24(17):4608-4618. doi: 10.1021/bi00338a020
Cademartiri L., Bishop K. J. M.. Programmable self-assembly[J]. Nat. Mater., 2015,14(1):2-9. doi: 10.1038/nmat4184
Wang Y., Breed D. R., Manoharan V. N., Feng L., Hollingsworth A. D., Weck M., Pine D. J.. Colloids with valence and specific directional bonding[J]. Nature, 2012,491(7422):51-55. doi: 10.1038/nature11564
Hashidzume A., Zheng Y., Takashima Y., Yamaguchi H., Harada A.. Macroscopic self-sssembly based on molecular recognition:effect of linkage between aromatics and the polyacrylamide gel scaffold, amide versus ester[J]. Macromolecules, 2013,46(5):1939-1947. doi: 10.1021/ma302344x
Yamaguchi H, Kobayashi R, Takashima Takashima, Hashidzume A., Harada A.. Self-assembly of gels through molecular recognition of cyclodextrins:shape selectivity for linear and cyclic guest molecules[J]. Macromolecules, 2011,44(8):2395-2399. doi: 10.1021/ma200398y
Zheng Y. T., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Macroscopic observations of molecular recognition:discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with β-cyclodextrin[J]. Langmuir, 2011,27(22):13790-13795. doi: 10.1021/la2034142
Kobayashi Y., Takashima Y., Hashidzume A., Yamaguchi H., Harada A.. Reversible self-assembly of gels through metal-ligand interactions[J]. Sci. Rep., 2013,3(7435)1243. doi: 10.1038/srep01243
Nakahata M., Takashima Y., Harada A.. Redox-responsive macroscopic gel assembly based on discrete dual interactions[J]. Angew. Chem. Int. Ed., 2014,53(14):3617-3621. doi: 10.1002/anie.v53.14
Nakahata M., Takashima Y., Hashidzume A., Harada A.. Macroscopic self-assembly based on complementary interaction between nucleobase pairs[J]. Chem. Eur. J., 2015,21(7):2770-2774. doi: 10.1002/chem.201404674
Yamaguchi H., Kobayashi Y., Kobayashi R., Takashima Y., Hashidzume A., Harada A.. Photoswitchable gel assembly based on molecular recognition[J]. Nat. Commun., 2012,3(48)603. doi: 10.1038/ncomms1617
Zheng Y. T., Akihito H., Harada A.. pH-responsive self-assembly by molecular recognition on a macroscopic scale[J]. Macromol. Rapid. Commun., 2013,34(13):1062-1066. doi: 10.1002/marc.v34.13
Zheng Y. T., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Temperature-sensitive macroscopic assembly based on molecular recognition[J]. ACS Macro. Lett., 2012,1(8):1083-1085. doi: 10.1021/mz300338d
Zheng Y., Hashidzume A., Takashima Y., Yamaguchi H., Harada A.. Switching of macroscopic molecular recognition selectivity using a mixed solvent system[J]. Nat. Commun., 2012,3831. doi: 10.1038/ncomms1841
Nakahata M., Mori S., Takashima Y., Hashidzume A., Yamaguchi H., Harada A.. pH-and sugar-responsive gel assemblies based on boronate-catechol interactions[J]. ACS Macro. Lett., 2014,3(4):337-340. doi: 10.1021/mz500035w
Qi H., Ghodousi M., Du Y., Grun C., Bae H., Yin P.. DNA-directed self-assembly of shape-controlled hydrogels[J]. Nat. Commun., 2013,42275. doi: 10.1038/ncomms3275
Ma C. X., Li T. F., Zhao Q., Yang X. X., Wu J. J., Luo Y. W., Xie T.. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels[J]. Adv. Mater., 2014,26(32):5665-5669. doi: 10.1002/adma.201402026
Lu H. X., Tang L. M.. Macroscopic self-assembly of organogels through quadruple hydrogel bonding[J]. Acta Polymerica Sinica (in Chinese), 2013(10):1241-1246.
Yuan W. Y., Lu Z. S., Li C. M.. Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers:amphoteric properties, ultrahigh loading capacity and pH-responsiveness[J]. J. Mater. Chem., 2012,22(18):9351-9357. doi: 10.1039/c2jm30834g
Shen L. Y., Fu J. H., Fu K., Picart C., Ji J.. Humidity responsive asymmetric free-standing multilayered film[J]. Langmuir, 2010,26(22):16634-16637. doi: 10.1021/la102928g
Yoo P. J., Zacharia N. S., Doh J., Nam K. T., Belcher A. M., Hammond P. T.. Controlling surface mobility in interdiffusing polyelectrolyte multilayers[J]. ACS Nano, 2008,2(3):561-571. doi: 10.1021/nn700404y
Wang X., Liu F., Zheng X. W., Sun J. Q.. Water-enabled self-healing of polyelectrolyte multilayer coatings[J]. Angew. Chem. Int. Ed., 2011,50(48):11378-11381. doi: 10.1002/anie.v50.48
Garza J. M., Schaaf P., Muller S., Ball V., Stoltz J., Voegel J., Lavalle P.. Multicompartment films made of alternate polyelectrolyte multilayers of exponential and linear growth[J]. Langmuir, 2004,20(17):7298-7302. doi: 10.1021/la049106o
Cheng M. J., Gao H. T., Zhang Y. J., Wolfgang T., Chen J. F., Shi F., Knoll W.. Combining magnetic field induced locomotion and supramolecular interaction to micromanipulate glass fibers:toward assembly of complex structures at mesoscale[J]. Langmuir, 2011,27(11):6559-6564. doi: 10.1021/la201399w
Wang R. M., Xie T.. Shape memory-and hydrogen bonding-based strong reversible adhesive system[J]. Langmuir, 2010,26(5):2999-3002. doi: 10.1021/la9046403
Wang R. M., Xie T.. Macroscopic evidence of strong cation-pi interactions in a synthetic polymer system[J]. Chem. Commun., 2010,46(8):1341-1343. doi: 10.1039/b916204f
Ahn Y., Jang Y., Selvapalam N., Yun G., Kim K.. Supramolecular velcro for reversible underwater adhesion[J]. Angew. Chem. Int. Ed., 2013,52(11):3140-3144. doi: 10.1002/anie.201209382
Cheng M. J., Ju G. N., Zhang Y. W., Song M. M., Zhang Y. J., Shi F.. Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy[J]. Small, 2014,10(19):3907-3911. doi: 10.1002/smll.201400922
Xiao M., Xian Y. M., Shi F.. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition[J]. Angew. Chem. Int. Ed., 2015,54(31):8952-8956. doi: 10.1002/anie.201502349
Akram R., Cheng M.; J., Guo F. L., Saleem I., Shi F.. Toward understanding whether interactive surface area could direct ordered macroscopic supramolecular self-assembly[J]. Langmuir, 2016,32(15):3617-3622. doi: 10.1021/acs.langmuir.6b00115
Ju G. N., Guo F. L., Zhang Q., Kuehne A. J. C., Cheng M. J., Shi F.. Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly[J]. Adv. Mater., 201729. doi: 10.1002/adma.201702444
Murphy S. V., Atala A.. 3D bioprinting of tissues and organs[J]. Nat. Biotechnol., 2014,32(8):773-785. doi: 10.1038/nbt.2958
Wylie R. G., Ahsan S., Aizawa Y., Maxwell K. L., Morshead C. M., Shoichet M. S.. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels[J]. Nat. Mater., 2011,10(10):799-806. doi: 10.1038/nmat3101
Persch E., Dumele O., Diederich F.. Molecular recognition in chemical and biological systems[J]. Angew. Chem. Int. Ed., 2015,54(11):3290-3327. doi: 10.1002/anie.201408487
Jurin F. E., Buron C. C., Martin N., Filiâtre C.. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film:influence of polyelectrolyte solution composition[J]. J. Colloid. Interface Sci., 2014,431:64-70. doi: 10.1016/j.jcis.2014.06.005
Shin S., Lim S., Kim Y., Kim T., Choi T. L., Lee M.. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction[J]. J. Am. Chem. Soc., 2013,135(6):2156-2159. doi: 10.1021/ja400160j
Anderson C. A., Jones A. R., Briggs E. M., Novitsky E. J., Kuykendall D. W., Sottos N. R., Zimmerman S. C.. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion[J]. J. Am. Chem. Soc., 2013,135(19):7288-7295. doi: 10.1021/ja4005283
Livnah O., Bayer E. A., Wilchek M., Sussman J. L.. Three-dimensional structures of avidin and the avidin-biotin complex[J]. Proc. Natl. Acad. Sci. U S A, 1993,90(11):5076-5080. doi: 10.1073/pnas.90.11.5076
Li C., Faulknerjones A., Dun A. R., Jin J., Chen P., Xing Y. Z., Yang Z. Q., Li Z. B., Shu W. M., Liu D. S.. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting[J]. Angew. Chem., 2015,54(13):3957-3961. doi: 10.1002/anie.201411383
Han Y. L., Yang Y. S., Liu S. B., Wu J. H., Chen Y. M., Lu T. J., Xu F.. Directed self-assembly of microscale hydrogels by electrostatic interaction[J]. Biofabrication, 2013,5(3)35004. doi: 10.1088/1758-5082/5/3/035004
Li Y. H., Huang G. Y., Zhang X. H., Li B. Q., Chen Y. M., Lu T. L., Lu T. J., Xu F.. Magnetic hydrogels and their potential biomedical applications[J]. Adv. Funct. Mater., 2013,23(6):660-672. doi: 10.1002/adfm.v23.6
Xu F., Finley T., Turkaydin M., Sung Y., Gurkan U. A., Yavuz A. S., Guldiken R., Demirci U.. The assembly of cell-encapsulating microscale hydrogels using acoustic waves[J]. Biomaterials, 2011,32(31):7847-7855. doi: 10.1016/j.biomaterials.2011.07.010
Cheng M. J., Liu Q., Xian Y. M., Shi F.. Programmable macroscopic supramolecular assembly through combined molecular recognition and magnetic field-assisted localization[J]. ACS Appl. Mater. Interfaces, 2014,6(10):7572-7578. doi: 10.1021/am500910y
Cheng M. J., Wang Y., Yu L. L., Su H. J., Han W. D., Lin Z. F., Li J. S., Hao H. J., Tong C., Li X. L., Shi F.. Macroscopic supramolecular assembly to fabricate 3D ordered structures:towards potential tissue scaffolds with targeted modification[J]. Adv. Funct. Mater., 2015,25(44):6851-6857. doi: 10.1002/adfm.201503366
Zhang Y. W., Cheng M. J., Wang Y., Shi F.. Constructing a multiplexed DNA pattern by combining precise magnetic manipulation and DNA-driven assembly[J]. Langmuir, 2017. doi: 10.1021/acs.langmuir.7b02608
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Yu Hong , Yuqian Jiang , Chenhuan Yuan , Decai Wang , Yimeng Sun , Jian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Nianqiang Jiang , Yiqiang Ou , Yanpeng Zhu , Dingyong Zhong , Jiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411