Citation: Yuan Gan, Zhi-Da Wang, Zhuo-Xin Lu, Yan Shi, Hong-Yi Tan, Chang-Feng Yan. Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 728-735. doi: 10.1007/s10118-018-2066-2 shu

Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent

  • This work offers a typical understanding of the factors that govern the nanostructures of poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine) (P4VP-b-PS-b-P4VP) block copolymers (BCs) in dioxane/water, in which water is a selective solvent for the P4VP block. It is achieved through an investigation of the amphiphilic triblock copolymer micelles by variation of three different factors, including water content (above CWC but under the immobile concentration), temperature (ranging from 20℃ to 80℃), and copolymer composition (low and high PS block length). Transition of bead-like micelles to vesicles is observed with the increase of water content due to the increase of interfacial energy between the copolymer and the solvent. Effect of temperature superposed on that of water content results in various morphologies, such as beads, fibers, rods, capsules, toroids, lamellae, and vesicles. The interfacial tension between the BC and the solvent increases with the increase of water content but decreases with the increase of temperature, indicating that the micellar morphologies are resulted from the competitive interplay between the temperature and the water content and always change in a direction that decreases the interfacial energy. Based on the micellar structures obtained in this work and the effects of temperature superposed on water concentration, a diagram of phase evolution of different micellar morphologies is illustrated here, covering the temperature range from 20℃ to 80℃ and the water content changing from 20 vol% to 35 vol%. For the investigation of BC composition, morphological transition of vesicle-to-fiber, for high PS length, is observed as compared with bead-to-capsule for low PS length, as the temperature changes from 20℃ to 80℃. Our research complements the protocols to control over the morphologies and the phase diagram describing P4VP-b-PS-b-P4VP micellar nanostructures in aqueous solution.
  • 加载中
    1. [1]

      Reuther J. F., Siriwardane D. A., Campos R., Novak B. M.. Solvent tunable self-assembly of amphiphilic rod-coil block copolymers with chiral, helical polycarbodiimide segments:polymeric nanostructures with variable shapes and sizes[J]. Macromolecules, 2015,48(19):6890-6899. doi: 10.1021/acs.macromol.5b01564

    2. [2]

      Kim Y., Li W., Shin S., Lee M.. Development of toroidal nanostructures by self-assembly:rational designs and applications[J]. Acc. Chem. Res., 2013,46(12):2888-2897. doi: 10.1021/ar400027c

    3. [3]

      Qin G. K., Perez P. M., Mills C. E., Olsen B. D.. Effect of ELP sequence and fusion protein design on concentrated solution self-assembly[J]. Biomacromolecules, 2016,17(3):928-934. doi: 10.1021/acs.biomac.5b01604

    4. [4]

      Choueiri R. M., Galati E., Therien-Aubin H., Klinkova A., Larin E. M., Querejeta-Fernandez A., Han L. L., Xin H. L., Gang O., Zhulina E. B., Rubinstein M., Kumacheva E.. Surface patterning of nanoparticles with polymer patches[J]. Nature, 2016,538(7623):79-83. doi: 10.1038/nature19089

    5. [5]

      Muraoka K., Chaikittisilp W., Yanaba Y., Yoshikawa T., Okubo T.. Highly nanoporous silicas with pore apertures near the boundary between micro- and mesopores through an orthogonal self-assembly approach[J]. Chem. Commun., 2015,51(53):10718-10721. doi: 10.1039/C5CC02801A

    6. [6]

      Wang N., Niu W. H., Li L. G., Liu J., Tang Z. H., Zhou W. J., Chen S. W.. Oxygen electroreduction promoted by quasi oxygen vacancies in metal oxide nanoparticles prepared by photoinduced chlorine doping[J]. Chem. Commun., 2015,51(53):10620-10623. doi: 10.1039/C5CC02808F

    7. [7]

      Jin C., Olsen B. C., Wu N. L. Y., Luber E. J., Buriak J. M.. Sequential nanopatterned block copolymer self-assembly on surfaces[J]. Langmuir, 2016,32(23):5890-5898. doi: 10.1021/acs.langmuir.6b01365

    8. [8]

      Deng Z. Y., Qian Y. F., Yu Y. Q., Liu G. H., Hu J. M., Zhang G. Y., Liu S. Y.. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized Bilayer cross-linking and permeabilizing inside live cells[J]. J. Am. Chem. Soc., 2016,138(33):10452-10466. doi: 10.1021/jacs.6b04115

    9. [9]

      Ballauff M.. Self-assembly creates 2D materials[J]. Science, 2016,352(6286):656-657. doi: 10.1126/science.aaf4930

    10. [10]

      Wang K., Jin S. M., Xu J. P., Liang R. J., Khurram S., Xue Z. G., Xie X. L., Lee E. L., Zhu J. T.. Electric-directed assembly of polymer-tethered gold nanorods under cylindrical confinement[J]. ACS Nano, 2016,10(5):4954-4960. doi: 10.1021/acsnano.6b00487

    11. [11]

      Wang M., Wang K., Wang C., Huang M. J., Hao X. Q., Shen M. Z., Shi G. Q., Zhang Z., Song B., Cisneros A., Song M. P., Xu B. Q., Li X. P.. Self-assembly of concentric hexagons and hierarchical self-assembly of supramolecular metal-organic nanoribbons at the solid/liquid interface[J]. J. Am. Chem. Soc., 2016,138(29):9258-9268. doi: 10.1021/jacs.6b04959

    12. [12]

      Li X. F., Yang Y., Eastoe J., Dong J. F.. Rich self-assembly behavior from a simple amphiphile[J]. ChemPhysChem, 2010,11(14):3074-3077. doi: 10.1002/cphc.201000500

    13. [13]

      Wu J. Y., Gao C.. Sliding supramolecular polymer brushes with tunable amphiphilicity:one-step parallel click synthesis and self-assembly[J]. Macromolecules, 2010,43(17):7139-7146. doi: 10.1021/ma100956y

    14. [14]

      Lindman B.. From surfactant to cellulose and DNA self-assembly.a 50-year journey[J]. Colloid. Polym. Sci., 2016,294(11):1687-1703. doi: 10.1007/s00396-016-3927-2

    15. [15]

      Hu J. M., Wu T., Zhang G. Y., Liu S. Y.. Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly[J]. J. Am. Chem. Soc., 2012,134(18):7624-7627. doi: 10.1021/ja302019q

    16. [16]

      Zhang J. W., Li F., Yuan B., Song Q., Wang Z. Q., Zhang X.. Layer-by-layer assembly of Azulene-based supra-amphiphiles:reversible encapsulation of organic molecules in water by charge-transfer interaction[J]. Langmuir, 2013,29(21):6348-6353. doi: 10.1021/la400945u

    17. [17]

      Wu N. L. Y., Harris K. D., Buriak J. M.. Conversion of bilayers of PS-b-PDMS block copolymer into closely packed, aligned silica nanopatterns[J]. ACS Nano, 2013,7(6):5595-5606. doi: 10.1021/nn401968t

    18. [18]

      Dalsin S. J., Rions-Maehren T. G., Beam M. D., Bates F. S., Hillmyer M. A., Matsen M. W.. Bottlebrush block polymers:quantitative theory and experiments[J]. ACS Nano, 2015,9(12):12233-12245. doi: 10.1021/acsnano.5b05473

    19. [19]

      Borisov O. V., Zhulina E. B.. Theory of self-assembly of triblock ter-polymers in selective solvent towards corona-compartmentalized (Janus) micelles[J]. Polymer, 2013,54(8):2043-2048. doi: 10.1016/j.polymer.2013.01.015

    20. [20]

      Horechyy A., Nandan B., Zafeiropoulos N. E., Formanek P., Oertel U., Bigall N. C., Eychmuller A., Stamm M.. A step-wise approach for dual nanoparticle patterning via block copolymer self-assembly[J]. Adv. Funct. Mater., 2013,23(4):483-490. doi: 10.1002/adfm.201201452

    21. [21]

      Obeid R., Scholz C.. Synthesis and self-assembly of well-defined poly(amino acid) end-capped poly(ethylene glycol) and poly(2-methyl-2-oxazoline)[J]. Biomacromolecules, 2011,12(10):3797-3804. doi: 10.1021/bm201048x

    22. [22]

      Zhang J. P., Zou M., Dong J. F., Li X. F.. Synthesis and self-assembly behaviors of well-defined poly(lauryl methacrylate)-block-poly[N-(2-methacryloylxyethyl)pyrrolidon e] copolymers[J]. Colloid. Polym. Sci., 2013,291(11):2653-2662. doi: 10.1007/s00396-013-3020-z

    23. [23]

      Charleux B., Delaittre G., Rieger J., D'Agosto F.. Polymerization-induced self-assembly:from soluble macromolecules to block copolymer nano-objects in one step[J]. Macromolecules, 2012,45(17):6753-6765. doi: 10.1021/ma300713f

    24. [24]

      Kim S., Nealey P. F., Bates F. S.. Directed assembly of lamellae forming block copolymer thin films near the order-disorder transition[J]. Nano Lett., 2014,14(1):148-152. doi: 10.1021/nl403628d

    25. [25]

      Vishnevetskaya N. S., Hildebrand V., Niebuur B. J., Grillo I., Filippov S. K., Laschewsky A., Muller-Buschbaum P., Papadakis C. M.. Aggregation Behavior of Doubly Thermoresponsive polysulfobetaine-b-poly(N-isopropylacrylamide) diblock copolymers[J]. Macromolecules, 2016,49(17):6655-6668. doi: 10.1021/acs.macromol.6b01186

    26. [26]

      Tripathi B. P., Dubey N. C., Choudhury S., Formanek P., Stamm M.. Ultrathin and switchable nanoporous catalytic membranes of polystyrene-b-poly-4-Vinyl pyridine block copolymer spherical micelles[J]. Adv. Mater. Interfaces, 2015,2(11):1500097-1500108. doi: 10.1002/admi.201500097

    27. [27]

      Liu X. Y., Wu J., Kim J. S., Eisenberg A.. Self-assembly of mixtures of block copolymers of polystyrene-b-acrylic acid) with random copolymers of polystyrene-co-methacrylic acid)[J]. Langmuir, 2006,22(1):419-424. doi: 10.1021/la0519610

    28. [28]

      Jia D., Zuo T., Rogers S., Cheng H., Hammouda B., Han C. C.. Re-entrance of poly(N, N-diethylacrylamide) in D2O/d-ethanol mixture at 27 ℃[J]. Macromolecules, 2016,49(14):5152-5159. doi: 10.1021/acs.macromol.6b00785

    29. [29]

      Liu H., Luo J., Shan W., Guo D., Wang J., Hsu C. H., Huang M., Zhang W., Lotz B., Zhang W. B., Liu T., Yue K. Z. D., Cheng S. Z. D.. Manipulation of self-assembled nanostructure dimensions in molecular Janus particles[J]. ACS Nano, 2016,10(7):6585-6596. doi: 10.1021/acsnano.6b01336

    30. [30]

      Sun J., Cernoch P., Volkel A., Wei Y. H., Ruokolainen J., Schlaad H.. Aqueous self-assembly of a protein-mimetic ampholytic block copolypeptide[J]. Macromolecules, 2016,49(15):5494-5501. doi: 10.1021/acs.macromol.6b00817

    31. [31]

      Backes S., Witt M. U., Roeben E., Kuhrts L., Aleed S., Schmidt A. M., von Klitzing R.. Loading of PNIPAM based microgels with CoFe2O4 nanoparticles and their magnetic response in bulk and at surfaces[J]. J. Phys. Chem. B, 2015,119(36):12129-12137. doi: 10.1021/acs.jpcb.5b03778

    32. [32]

      Morsbach J., Elbert J., Ruttiger C., Winzen S., Frey H., Gallei M.. Polyvinylferrocene-based amphiphilic block copolymers featuring functional junction points for cross-linked micelles[J]. Macromolecules, 2016,49(9):3406-3413. doi: 10.1021/acs.macromol.6b00514

    33. [33]

      Filippov S. K., Bogomolova A., Kaberov L., Velychkivska N., Starovoytova L., Cernochova Z., Rogers S. E., Lau W. M., Khutoryanskiy V. V., Cook M. T.. Internal nanoparticle structure of temperature-responsive self-assembled PNIPAM-b-PEG-b-PNIPAM triblock copolymers in aqueous solutions:NMR, SANS, and light scattering studies[J]. Langmuir, 2016,32(21):5314-5323. doi: 10.1021/acs.langmuir.6b00284

    34. [34]

      Lv A., Cui Y., Du F. S., Li Z. C.. Thermally degradable polyesters with tunable degradation temperatures via postpolymerization modification and intramolecular cyclization[J]. Macromolecules, 2016,49(22):8449-8458. doi: 10.1021/acs.macromol.6b01325

    35. [35]

      Wan Y. M., Liu L. B., Yuan S. S., Sun J., Li Z. B.. pH-Responsive peptide supramolecular hydrogels with antibacterial activity[J]. Langmuir, 2017,33(13):3234-3240. doi: 10.1021/acs.langmuir.6b03986

    36. [36]

      Zhu Z. Y., Armes S. P., Liu S. Y.. pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering[J]. Macromolecules, 2005,38(23):9803-9812. doi: 10.1021/ma051808c

    37. [37]

      Zhang L. F., Eisenberg A.. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym. Adv. Technol., 1998,9(10-11):677-699. doi: 10.1002/(ISSN)1099-1581

    38. [38]

      Vyhnalkova R., Muller A. H. E., Eisenberg A.. Control of corona composition and morphology in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers:effects of pH and block length[J]. Langmuir, 2014,30(17):5031-5040. doi: 10.1021/la500712b

    39. [39]

      Vyhnalkova R., Muller A. H. E., Eisenberg A.. Control of morphology and corona composition in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers:effects of solvent, water content, and mixture composition[J]. Langmuir, 2014,30(44):13152-13163. doi: 10.1021/la5028527

    40. [40]

      Kahnamouei F., Zhu K. Z., Lund R., Knudsen K. D., Nystrom B.. Self-assembly of a hydrophobically end-capped charged amphiphilic triblock copolymer:effects of temperature and salinity[J]. RSC Adv., 2015,5(58):46916-46927. doi: 10.1039/C5RA07657A

    41. [41]

      Wang Y. J., Gao X. D., Xiao Y. L., Zhao Q., Yang J., Yan Y., Huang J. B.. Temperature dependent coordinating self-assembly[J]. Soft Matter, 2015,11(14):2806-2811. doi: 10.1039/C4SM02717E

    42. [42]

      Zhou Y., Zhou C., He X., Xue X. G., Qian W., Luo S. K., Xia H. G.. Shear-induced self-assembly of linear ABC triblock copolymers in solution:creation of 1D cylindrical micellar structures[J]. RSC Adv., 2016,6(7):5711-5717. doi: 10.1039/C5RA23474C

    43. [43]

      Cui J., Ma Z. W., Li W., Jiang W.. Self-assembly of diblock copolymers under shear flow:a simulation study by combining the self-consistent field and lattice Boltzmann method[J]. Chem. Phys., 2011,386(1-3):81-87. doi: 10.1016/j.chemphys.2011.06.012

    44. [44]

      Yu H. Z., Jiang W.. Effect of shear flow on the formation of ring-shaped ABA amphiphilic triblock copolymer micelles[J]. Macromolecules, 2009,42(9):3399-3404. doi: 10.1021/ma900107r

    45. [45]

      Han Y. Y., Yu H. Z., Du H. B., Jiang W.. Effect of selective solvent addition rate on the pathways for spontaneous vesicle formation of ABA amphiphilic triblock copolymers[J]. J. Am. Chem. Soc., 2010,132(3):1144-1150. doi: 10.1021/ja909379y

    46. [46]

      Wang Z. D., Jiang W.. Temperature-induced reversible transformation between toroidal and cylindrical assemblies under shear flow[J]. Soft Matter, 2010,6(16):3743-3746. doi: 10.1039/c0sm00310g

    47. [47]

      Terreau O., Bartels C., Eisenberg A.. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution[J]. 2. A partial phase diagram. Langmuir, 2004,20(3):637-645.  

    48. [48]

      Yu H. Z., Zhu J. T., Jiang W.. Effect of binary block-selective solvents on self-assembly of ABA triblock copolymer in dilute solution[J]. J. Polym. Sci., Part B:Polym. Phys., 2008,46(15):1536-1545. doi: 10.1002/polb.v46:15

    49. [49]

      Zhang L. F., Eisenberg A.. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J]. Macromolecules, 1999,32(7):2239-2249. doi: 10.1021/ma981039f

    50. [50]

      Wang Z. D., Sun F. M., Huang S. L., Yan C. F.. From toroidal to rod-like nanostructure, a mechanism study for the reversible morphological control on amphiphilic triblock copolymer micelles[J]. J. Polym. Sci., Part B:Polym. Phys., 2016,54(15):1450-1457. doi: 10.1002/polb.v54.15

    51. [51]

      Bhargava P., Tu Y. F., Zheng J. X., Xiong H. M., Quirk R. P., Cheng S. Z. D.. Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution[J]. J. Am. Chem. Soc., 2007,129(5):1113-1121. doi: 10.1021/ja0653019

    52. [52]

      Zhu J. T., Liao Y. G., Jiang W.. Ring-shaped morphology of "Crew-Cut" aggregates from ABA amphiphilic triblock copolymer in a dilute solution[J]. Langmuir, 2004,20(9):3809-3812. doi: 10.1021/la0361565

    53. [53]

      Shen H. W., Eisenberg A.. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O[J]. J. Phys. Chem. B, 1999,103(44):9473-9487. doi: 10.1021/jp991365c

    54. [54]

      Wang Z. D., Gan Y., Yan C. F., Huang Y., Jiang W.. Mechanism study of reversible transition between self-assembly and disassembly of ABC triblock copolymer micelles[J]. Polymer, 2016,90:276-281. doi: 10.1016/j.polymer.2016.03.036

    55. [55]

      Betthausen E., Drechsler M., Fortsch M., Schacher F. H., Muller A. H. E.. Dual stimuli-responsive multicompartment micelles from triblock terpolymers with tunable hydrophilicity[J]. Soft Matter, 2011,7(19):8880-8891. doi: 10.1039/c1sm05822c

    56. [56]

      Yadav H. O. S., Shrivastav G., Agarwal M., Chakravarty C.. Effective interactions between nanoparticles:creating temperature-independent solvation environments for self-assembly[J]. J. Chem. Phys., 2016,144(24). doi: 10.1063/1.4954325

    57. [57]

      Li Z. Y., Liu R., Mai B. Y., Wang W. J., Wu Q., Liang G. D., Gao H. Y., Zhu F. M.. Temperature-induced and crystallization-driven self-assembly of polyethylene-b-poly(ethylene oxide) in solution[J]. Polymer, 2013,54(6):1663-1670. doi: 10.1016/j.polymer.2013.01.044

    58. [58]

      Zhang L. F., Eisenberg A.. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J. Am. Chem. Soc., 1996,118(13):3168-3181. doi: 10.1021/ja953709s

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    3. [3]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    4. [4]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    11. [11]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    12. [12]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    13. [13]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    14. [14]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    15. [15]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    16. [16]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    17. [17]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    20. [20]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

Metrics
  • PDF Downloads(0)
  • Abstract views(551)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return