Citation: Chao Zhao, Ryuichi Sugimoto, Yusuke Naruoka. A Simple Method for Synthesizing Ultra-high-molecular-weight Polystyrene through Emulsion Polymerization Using Alkyl-9-BBN as an Initiator[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 592-597. doi: 10.1007/s10118-018-2064-4 shu

A Simple Method for Synthesizing Ultra-high-molecular-weight Polystyrene through Emulsion Polymerization Using Alkyl-9-BBN as an Initiator

  • Corresponding author: Ryuichi Sugimoto, sugimoto.ryuichi@kochi-tech.ac.jp
  • Received Date: 23 August 2017
    Accepted Date: 17 October 2017
    Available Online: 18 January 2018

  • Styrene emulsion polymerization using an alkyl-9-BBN, synthesized by reacting 9-BBN (9-borabicyclo-[3.3.1]-nonane) and styrene, in an aqueous sodium dodecyl sulfate (SDS) solution was studied. Ultra-high-molecular-weight > 1.0×107) polystyrene was synthesized using a radical initiator formed through the aerobic oxidation of this alkyl-9-BBN in a high yield > 80%). The kinetics of this emulsion polymerization of styrene with the alkyl-9-BBN was investigated. We confirmed that in the initial stage of the polymerization, the initial reaction rate followed first-order kinetics. The activation energy for this emulsion polymerization of styrene was approximately 56.2 kJ/mol.

    1. [1]

      Renaud P., Beauseigneur A., Brecht-Forster A., Becattini B., Darmency V., Kandhasamy S., Montermini F., Ollivier C., Panchaud P., Pozzi D., Scanlan E. M., Schaffner A., Weber V.. Boron:a key element in radical reactions[J]. Pure Appl. Chem., 2007,79(2):223-233. doi: 10.1351/pac200779020223

    2. [2]

      Welch F, J.. Polymerization of methyl methacrylate by triethylboron-oxygen mixtures[J]. J. Polym. Sci., 1962,61:243-252. doi: 10.1002/pol.1962.1206117125

    3. [3]

      Yuzuru M., Masayuki H., Yutaka N., Akira A.. A remarkably efficient initiation by 9-BBN in the radical addition reactions of alkanethiols to alk-1-enes[J]. J. Chem. Soc., Chem. Commun., 1991(20):1444-1445. doi: 10.1039/c39910001444

    4. [4]

      Chung T. C., Janvikul W., Lu H. L.. A novel "stable" radical initiator based on the oxidation adducts of alkyl-9-BBN[J]. J. Am. Chem. Soc., 1996,118(3):705-706. doi: 10.1021/ja9527737

    5. [5]

      Chung T. C., Rhubright D., Jiang G. J.. Synthesis of polypropylene-graft-poly(methyl methacrylate) copolymers by the borane approach[J]. Macromolecules, 1993,26(14):3467-3471. doi: 10.1021/ma00066a001

    6. [6]

      Dong J. Y., Manias E., Chung T. C.. Functionalized syndiotactic polystyrene polymers prepared by the combination of metallocene catalyst and borane comonomer[J]. Macromolecules, 2002,35(9):3439-3447. doi: 10.1021/ma012215e

    7. [7]

      Chung T. C., Lu H. L., Janvikul W.. A novel synthesis of PP-b-PMMA copolymers via metallocene catalysis catalysis and borane chemistry[J]. Polymer, 1997,38(6):1495-1502. doi: 10.1016/S0032-3861(96)00854-3

    8. [8]

      Chung T. C., Xu G.. Metallocene-mediated olefin polymerization with B-H chain transfer agents:synthesis of chain-end functionalized polyolefins and diblock copolymers[J]. Macromolecules, 2001,34(23):8040-8050. doi: 10.1021/ma011074d

    9. [9]

      Mao B. W., Gan L. H., Gan Y. Y.. Ultra high molar mass poly[J]. Polymer, 2006,47(9):3017-3020. doi: 10.1016/j.polymer.2006.03.021

    10. [10]

      Truong N. P., Dussert M. V., Whittaker M. R., Quinn J. F., Davis T. P.. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization[J]. Polym. Chem., 2015,6(20):3865-3874. doi: 10.1039/C5PY00166H

    11. [11]

      Read E., Guinaudeau A., Wilson D. J., Cadix A., Violleau F., Destarac M.. Low temperature RAFT/MADIX gel polymerization:access to controlled ultra-high molar mass polyacrylamides[J]. Polym. Chem., 2014,5(7):2202-2207. doi: 10.1039/c3py01750h

    12. [12]

      Kitayama Y., Okubo M.. A synthetic route to ultra-high molecular weight polystyrene (> 106) with narrow molecular weight distribution by emulsifier-free, emulsion organotellurium-mediated living radical polymerization (emulsion TERP)[J]. Polym. Chem., 2016,7(14):2573-2580. doi: 10.1039/C6PY00285D

    13. [13]

      Jang Y. C., Choi D. S., Kim J. G.. First emulsion polymerization of styrene with sodium borohydride:evidence of the generation of radical intermediates by sodium borohydride in H2O[J]. Langmuir, 2004,20(16):6570-6574. doi: 10.1021/la040012o

    14. [14]

      Zetterlund P. B.. Controlled/living radical polymerization in nanoreactors:compartmentalization effects[J]. Polym. Chem., 2011,2(3):534-549. doi: 10.1039/C0PY00247J

    15. [15]

      Zetterlund P. B., Okubo M.. Compartmentalization in nitroxide-mediated radical polymerization in dispersed system[J]. Macromolecules, 2006,39(26):8959-8967. doi: 10.1021/ma060841b

    16. [16]

      Szkurhan A. R., Georges. M. K.. Aqueous stable free radical polymerization processes[J]. Chinese J. Polym. Sci., 2004,22(4):309-312.  

    17. [17]

      Jiang Q. M., Huang W. Y., Yang H. J., Xue X. Q., Jiang B. B., Zhang D. L., Fang J. B., Chen J. H., Yang Y., Zhai G. Q., Kong L. Z., Guo J.. Radical emulsion polymerization with chain transfer monomer:an approach to branched vinyl polymers with high molecular weight and relatively narrow polydispersity[J]. Polym. Chem., 2014,5(6):1863-1873. doi: 10.1039/c3py01437a

    18. [18]

      Gao J., Jang F. C., Zhai G. G.. Ultra-high molecular weight alpha-amino poly(methyl methacrylate) with high Tg through emulsion polymerization by using transition metal cation-tertiary amine pairs as a mono-centered initiator[J]. Macromol. React. Eng., 2016,10(3):269-279. doi: 10.1002/mren.201500067

    19. [19]

      Fan X., Jia X., Liu Y., Zhang H., Zhang B., Zhang H., Zhang Q.. Morphology evolution of poly(glycidyl methacrylate) colloids in the 1, 1-diphenylethene controlled soap-free emulsion polymerization[J]. Eur. Polym. J., 2017,92:220-232. doi: 10.1016/j.eurpolymj.2017.03.060

    20. [20]

      Zhan M. G., Li S. Y., Zhong Y., Shen C. H., Gao S. J.. Preparation and characterization of a foam regulator with ultra-high molecular weight[J]. J. Appl. Polym. Sci,, 2017,134(7). doi: 10.1002/app.44479

    1. [1]

      Renaud P., Beauseigneur A., Brecht-Forster A., Becattini B., Darmency V., Kandhasamy S., Montermini F., Ollivier C., Panchaud P., Pozzi D., Scanlan E. M., Schaffner A., Weber V.. Boron:a key element in radical reactions[J]. Pure Appl. Chem., 2007,79(2):223-233. doi: 10.1351/pac200779020223

    2. [2]

      Welch F, J.. Polymerization of methyl methacrylate by triethylboron-oxygen mixtures[J]. J. Polym. Sci., 1962,61:243-252. doi: 10.1002/pol.1962.1206117125

    3. [3]

      Yuzuru M., Masayuki H., Yutaka N., Akira A.. A remarkably efficient initiation by 9-BBN in the radical addition reactions of alkanethiols to alk-1-enes[J]. J. Chem. Soc., Chem. Commun., 1991(20):1444-1445. doi: 10.1039/c39910001444

    4. [4]

      Chung T. C., Janvikul W., Lu H. L.. A novel "stable" radical initiator based on the oxidation adducts of alkyl-9-BBN[J]. J. Am. Chem. Soc., 1996,118(3):705-706. doi: 10.1021/ja9527737

    5. [5]

      Chung T. C., Rhubright D., Jiang G. J.. Synthesis of polypropylene-graft-poly(methyl methacrylate) copolymers by the borane approach[J]. Macromolecules, 1993,26(14):3467-3471. doi: 10.1021/ma00066a001

    6. [6]

      Dong J. Y., Manias E., Chung T. C.. Functionalized syndiotactic polystyrene polymers prepared by the combination of metallocene catalyst and borane comonomer[J]. Macromolecules, 2002,35(9):3439-3447. doi: 10.1021/ma012215e

    7. [7]

      Chung T. C., Lu H. L., Janvikul W.. A novel synthesis of PP-b-PMMA copolymers via metallocene catalysis catalysis and borane chemistry[J]. Polymer, 1997,38(6):1495-1502. doi: 10.1016/S0032-3861(96)00854-3

    8. [8]

      Chung T. C., Xu G.. Metallocene-mediated olefin polymerization with B-H chain transfer agents:synthesis of chain-end functionalized polyolefins and diblock copolymers[J]. Macromolecules, 2001,34(23):8040-8050. doi: 10.1021/ma011074d

    9. [9]

      Mao B. W., Gan L. H., Gan Y. Y.. Ultra high molar mass poly[J]. Polymer, 2006,47(9):3017-3020. doi: 10.1016/j.polymer.2006.03.021

    10. [10]

      Truong N. P., Dussert M. V., Whittaker M. R., Quinn J. F., Davis T. P.. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization[J]. Polym. Chem., 2015,6(20):3865-3874. doi: 10.1039/C5PY00166H

    11. [11]

      Read E., Guinaudeau A., Wilson D. J., Cadix A., Violleau F., Destarac M.. Low temperature RAFT/MADIX gel polymerization:access to controlled ultra-high molar mass polyacrylamides[J]. Polym. Chem., 2014,5(7):2202-2207. doi: 10.1039/c3py01750h

    12. [12]

      Kitayama Y., Okubo M.. A synthetic route to ultra-high molecular weight polystyrene (> 106) with narrow molecular weight distribution by emulsifier-free, emulsion organotellurium-mediated living radical polymerization (emulsion TERP)[J]. Polym. Chem., 2016,7(14):2573-2580. doi: 10.1039/C6PY00285D

    13. [13]

      Jang Y. C., Choi D. S., Kim J. G.. First emulsion polymerization of styrene with sodium borohydride:evidence of the generation of radical intermediates by sodium borohydride in H2O[J]. Langmuir, 2004,20(16):6570-6574. doi: 10.1021/la040012o

    14. [14]

      Zetterlund P. B.. Controlled/living radical polymerization in nanoreactors:compartmentalization effects[J]. Polym. Chem., 2011,2(3):534-549. doi: 10.1039/C0PY00247J

    15. [15]

      Zetterlund P. B., Okubo M.. Compartmentalization in nitroxide-mediated radical polymerization in dispersed system[J]. Macromolecules, 2006,39(26):8959-8967. doi: 10.1021/ma060841b

    16. [16]

      Szkurhan A. R., Georges. M. K.. Aqueous stable free radical polymerization processes[J]. Chinese J. Polym. Sci., 2004,22(4):309-312.  

    17. [17]

      Jiang Q. M., Huang W. Y., Yang H. J., Xue X. Q., Jiang B. B., Zhang D. L., Fang J. B., Chen J. H., Yang Y., Zhai G. Q., Kong L. Z., Guo J.. Radical emulsion polymerization with chain transfer monomer:an approach to branched vinyl polymers with high molecular weight and relatively narrow polydispersity[J]. Polym. Chem., 2014,5(6):1863-1873. doi: 10.1039/c3py01437a

    18. [18]

      Gao J., Jang F. C., Zhai G. G.. Ultra-high molecular weight alpha-amino poly(methyl methacrylate) with high Tg through emulsion polymerization by using transition metal cation-tertiary amine pairs as a mono-centered initiator[J]. Macromol. React. Eng., 2016,10(3):269-279. doi: 10.1002/mren.201500067

    19. [19]

      Fan X., Jia X., Liu Y., Zhang H., Zhang B., Zhang H., Zhang Q.. Morphology evolution of poly(glycidyl methacrylate) colloids in the 1, 1-diphenylethene controlled soap-free emulsion polymerization[J]. Eur. Polym. J., 2017,92:220-232. doi: 10.1016/j.eurpolymj.2017.03.060

    20. [20]

      Zhan M. G., Li S. Y., Zhong Y., Shen C. H., Gao S. J.. Preparation and characterization of a foam regulator with ultra-high molecular weight[J]. J. Appl. Polym. Sci,, 2017,134(7). doi: 10.1002/app.44479

  • 加载中
    1. [1]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    2. [2]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    11. [11]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      . . University Chemistry, 2024, 39(9): 0-0.

    14. [14]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    15. [15]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    16. [16]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    17. [17]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    18. [18]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    19. [19]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    20. [20]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

Metrics
  • PDF Downloads(0)
  • Abstract views(817)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return