Citation: Hong-Xing He, Qiang Gan, Chang-Gen Feng. An Ion-imprinted Silica Gel Polymer Prepared by Surface Imprinting Technique Combined with Aqueous Solution Polymerization for Selective Adsorption of Ni(Ⅱ) from Aqueous Solution[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 462-471. doi: 10.1007/s10118-018-2063-5 shu

An Ion-imprinted Silica Gel Polymer Prepared by Surface Imprinting Technique Combined with Aqueous Solution Polymerization for Selective Adsorption of Ni(Ⅱ) from Aqueous Solution

  • Corresponding author: Chang-Gen Feng, cgfeng@cast.org.cn
  • Received Date: 23 August 2017
    Accepted Date: 16 October 2017
    Available Online: 2 January 2018

  • A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as a functional monomer for the selective separation of Ni(Ⅱ) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(Ⅱ) at the optimal pH of 7.0 was 66.22 mg·g-1. The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Cu(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pb(Ⅱ), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(Ⅱ) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(Ⅱ) in real water samples.
  • 加载中
    1. [1]

      Wahi R., Ngaini Z., Jok V.U.. Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch[J]. World Appl. Sci. J., 2013,5:84-91.  

    2. [2]

      Kristiansen K., Christensen J. M., Henriksen T., Nielsen N. H., Menné T.. Determination of nickel in fingernails and forearm skin (stratum corneum)[J]. Anal. Chim. Acta, 2000,403(1-2):265-272. doi: 10.1016/S0003-2670(99)00568-1

    3. [3]

      Fu J., Chen L., Li J., Zhang Z.. Current status and challenges of ion imprinting[J]. J. Mater. Chem. A, 2015,3(26):13598-13627. doi: 10.1039/C5TA02421H

    4. [4]

      Özcan A.S., Gök Ö., Özcan A.. Adsorption of lead(Ⅱ) ions onto 8-hydroxy quinoline-immobilized bentonite[J]. J. Hazard Mater., 2009,161(1):499-509. doi: 10.1016/j.jhazmat.2008.04.002

    5. [5]

      Xing C., Yang Z. X., Zhang Z. H., Wei R., Liu Y. N., Chen H. J., Hu X. Y., Cai R., Nie L. H.. Synthesis and application of novel magnetic lead(Ⅱ) ion imprinted polymers based on multiwalled carbon nanotubes[J]. Chinese J. Anal. Chem., 2013,41(9):1406-1412.  

    6. [6]

      Hande P. E., Samui A. B., Kulkarni P. S.. Highly selective monitoring of metals by using ion-imprinted polymers[J]. Environ. Sci. Pollut. Res., 2015,22(10):7375-7404. doi: 10.1007/s11356-014-3937-x

    7. [7]

      Branger C., Meouche W., Margaillan A.. Recent advances on ion-imprinted polymers[J]. React. Funct. Polym., 2013,73(6):859-875. doi: 10.1016/j.reactfunctpolym.2013.03.021

    8. [8]

      Nishide H., Deguchi J., Tsuchida E.. Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template[J]. Chem. Lett., 1976,5(2):169-174. doi: 10.1246/cl.1976.169

    9. [9]

      Saraji M., Yousefi H.. Selective solid-phase extraction of Ni(Ⅱ) by an ion-imprinted polymer from water samples[J]. J. Hazard Mater., 2009,167(1-3):1152-1157. doi: 10.1016/j.jhazmat.2009.01.111

    10. [10]

      Vatanpour V., Madaeni S. S., Zinadini S., Rajabi H. R.. Development of ion imprinted technique for designing nickel ion selective membrane[J]. J. Member. Sci., 2011,373(1):36-42.  

    11. [11]

      Singh D. K., Mishra S.. Synthesis, characterization and analytical applications of Ni(Ⅱ)-ion imprinted polymer[J]. Appl. Surf. Sci., 2010,256(24):7632-7637. doi: 10.1016/j.apsusc.2010.06.018

    12. [12]

      Luo F., Huang S., Xiong X., Lai X.. Synthesis and characterization of Hg(Ⅱ)-ion-imprinted polymer and its application for the determination of mercury in water samples[J]. RSC Adv., 2015,5(83):67365-67373. doi: 10.1039/C5RA10861F

    13. [13]

      Meouche W., Branger C., Beurroies I., Denoyel R., Margaillan A.. Inverse suspension polymerization as a new tool for the synthesis of ion-imprinted polymers[J]. Macromol. Rapid Commun., 2012,33(10):928-932. doi: 10.1002/marc.201200039

    14. [14]

      Lenoble V., Meouche W., Laatikainen K., Garnier C., Brisset H., Margaillan A., Branger C.. Assessment and modelling of Ni(Ⅱ) retention by an ion-imprinted polymer:application in natural samples[J]. J. Colloid Interf. Sci., 2015,448:473-481. doi: 10.1016/j.jcis.2015.02.055

    15. [15]

      Sayar O., Torbati N. A., Saravani H., Mehrani K., Behbahani A., Zadeh H. R. M.. A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(Ⅱ) ions in environment samples[J]. J. Ind. Eng. Chem., 2014,20(5):2657-2662. doi: 10.1016/j.jiec.2013.10.052

    16. [16]

      Markowitz M. A., Deng G., Burleigh M. C., Wong E. M., Gaber B. P.. Influence of quaternary amine organosilane structure on the formation and adsorption properties of surface-imprinted silicates[J]. Langmuir, 2001,17(22):7085-7092. doi: 10.1021/la010904d

    17. [17]

      Jiang N., Chang X., Zheng H., He Q., Hu Z.. Selective solid-phase extraction of nickel(Ⅱ) using a surface-imprinted silica gel sorbent[J]. Anal. Chim. Acta, 2006,577(2):225-231. doi: 10.1016/j.aca.2006.06.049

    18. [18]

      Timin A., Rumyantsev E., Solomonov A.. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubinadsorption[J]. J. Non-Cryst. Solids, 2014,385(3):81-88.  

    19. [19]

      Gao B., Du J., Zhang Y.. Preparation of arsenate anion surface-imprinted material IIP-PDMC/SiO2 and study on its ion recognition property[J]. Ind. Eng. Chem. Res., 2013,52(23):7651-7659. doi: 10.1021/ie400440k

    20. [20]

      Gao B., Meng J., Xu Y., Zhang Y. J.. Preparation of Fe(Ⅲ) ion surface-imprinted material for removing Fe(Ⅲ) impurity from lanthanide ion solutions[J]. J. Ind. Eng. Chem., 2015,24(4):351-358.  

    21. [21]

      He H., Gan Q., Feng C.. Preparation and application of Ni(Ⅱ) ion-imprinted silica gel polymer for selective separation of Ni(Ⅱ) from aqueous solution[J]. RSC Adv., 2017,7(25):15102-15111. doi: 10.1039/C7RA00101K

    22. [22]

      Li M., Feng C., Li M., Zeng Q., Gan Q.. Synthesis and characterization of a surface-grafted Cd(Ⅱ) ion-imprinted polymer for selective separation of Cd(Ⅱ) ion from aqueous solution[J]. Appl. Surf. Sci., 2015,332(4):463-472.  

    23. [23]

      Fan H. T., Sun X. T., Zhang Z. G., Li W. X.. Selective removal of lead(Ⅱ) from aqueous solution by an ion-imprinted silica sorbent functionalized with chelating N-donoratoms[J]. J. Chem. Eng. Data, 2014,59(6):2106-2114. doi: 10.1021/je500328t

    24. [24]

      Li Q., Su H., Li J., Tan T.. Application of surface molecular imprinting adsorbent in expanded bedfor the adsorption of Ni2+ and adsorption model[J]. J. Environ. Manage., 2007,85(4):900-907. doi: 10.1016/j.jenvman.2006.10.023

    25. [25]

      Fan H. T., Li J., Li Z. C., Sun T.. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium(Ⅱ) from aqueous solution[J]. Appl. Surf. Sci., 2012,258(8):3815-3822. doi: 10.1016/j.apsusc.2011.12.035

    26. [26]

      Hoai N. T., Yoo N. K., Kim D.. Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method[J]. J. Hazard Mater., 2010,173(1-3):462-467. doi: 10.1016/j.jhazmat.2009.08.107

    27. [27]

      Li M., Feng C., Li M., Zeng Q., Gan Q.. Synthesis and application of a surface-grafted In (Ⅲ) ion-imprinted polymer for selective separation and pre-concentration of indium(Ⅲ) ion from aqueous solution[J]. Hydrometallurgy, 2015,154(1):63-71.  

    28. [28]

      He Q., Chang X., Wu Q., Huang X., Hu Z., Zhai Y.. Synthesis and applications of surface-grafted Th(Ⅳ)-imprinted polymers for selective solid-phase extraction of thorium(Ⅳ)[J]. Anal. Chim. Acta, 2007,605(2):192-197. doi: 10.1016/j.aca.2007.10.026

    29. [29]

      Ge Y., Li Y., Zu B., Zhou C., Dou X.. AM-DMC-AMPS multi-functionalized magnetic nanoparticles for efficient purification of complex multiphase water system[J]. Nanoscale Res. Lett., 2016,11(1):1-9. doi: 10.1186/s11671-015-1209-4

    30. [30]

      Chen J. H., Lin H., Luo Z. H., He Y. S., Li G. P.. Cu(Ⅱ)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(Ⅱ) ions from aqueous solution[J]. Desalination, 2011,277(1):265-273.  

    31. [31]

      Yurdakoc M., Scki Y., Yuedakoc S. K.. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80[J]. J. Colloid Interf. Sci., 2005,286(2):440-446. doi: 10.1016/j.jcis.2004.12.047

    32. [32]

      Abbasi S., Roushani M., Khani H., Sahraei R., Mansouri G.. Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions[J]. Spectrochim. Acta A, 2015,140(5):534-543.  

    33. [33]

      Laatikainen K., Udomsap D., Siren H., Brisset H., Sainio T., Branger C.. Effect of template ion-ligand complex stoichiometry on selectivity of ion-imprinted polymers[J]. Talanta, 2015,134:538-545. doi: 10.1016/j.talanta.2014.11.050

    34. [34]

      Behbahani M., Taghizadeh M., Bagheri A., Hosseini H., Salarian M., Tootoonchi A.. A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions[J]. Microchim. Acta, 2012,178(3-4):429-437. doi: 10.1007/s00604-012-0846-x

    35. [35]

      Jazi M. B., Arshadi M., Amiri M. J., Gil A.. Kinetic and thermodynamic investigations of Pb(Ⅱ) and Cd(Ⅱ) adsorption on nanoscaleorgano-functionalized SiO2-Al2O3[J]. J. Colloid Interf. Sci., 2014,422(19):16-24.  

    36. [36]

      Liu B., Wang D., Li H., Xu Y., Zhang L.. As(Ⅲ) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(Ⅲ) as imprinted ions[J]. Desalination, 2011,272(1-3):286-292. doi: 10.1016/j.desal.2011.01.034

    37. [37]

      Meena A. K., Kadirvelu K., Mishra G. K., Rajagopal C., Nagar P.N.. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica)[J]. J. Hazard Mater., 2008,150(3):604-611. doi: 10.1016/j.jhazmat.2007.05.030

  • 加载中
    1. [1]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    4. [4]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    5. [5]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    6. [6]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    7. [7]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    8. [8]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    9. [9]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    10. [10]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    11. [11]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    16. [16]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    20. [20]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

Metrics
  • PDF Downloads(0)
  • Abstract views(848)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return