Citation: Qing-Chen Cao, Xing Wang, De-Cheng Wu. Controlled Cross-linking Strategy for Formation of Hydrogels, Microgels and Nanogels[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 8-17. doi: 10.1007/s10118-018-2061-7 shu

Controlled Cross-linking Strategy for Formation of Hydrogels, Microgels and Nanogels

  • Corresponding author: Xing Wang, wangxing@iccas.ac.cn De-Cheng Wu, dcwu@iccas.ac.cn
  • Received Date: 29 September 2017
    Revised Date: 11 October 2017
    Accepted Date: 11 October 2017
    Available Online: 30 October 2017

  • Hydrogels are a kind of unique cross-linking polymeric materials with three-dimensional networks. Various efforts have been devoted to manipulate the formation of functional hydrogels in situ and enrich the production of hydrogels, microgels and nanogels with improved modulation capacity. However, these methods always fail to tune the gel properties because of the difficulty in achieving the precise control of cross-linking extents once the gel formation is initiated. Therefore, the preparation of tailor-made hydrogels remains a great challenge. Herein, we summarize a controlled cross-linking strategy towards not only fabrication of hydrogels at nano-, micro-and macro-scales, but also achievement of controlled assembly of nanoparticles into multifunctional materials in macroscopic and microscopic scales. The strategy is conducted by controllably activating and terminating the disulfide reshuffling reactions of disulfide-linked core/shell materials with selective core/shell separation using system pH or UV triggers. So it provides a facile approach to producing hydrogels, hydrogel particles and nanoparticle aggregates with tunable structures and properties, opening up the design possibility, flexibility and complexity of hydrogels, microgels/nanogels and nanoparticle aggregates from nanoscopic components to macroscopic objects.
  • 加载中
    1. [1]

      Murthy N., Thng Y. X., Schuck S., Xu M. C., Fréchet J. M.. A novel strategy for encapsulation and release of proteins:hydrogels and microgels with acid-labile acetal cross-linkers[J]. J. Am. Chem. Soc., 2002,124(42):12398-12399. doi: 10.1021/ja026925r

    2. [2]

      Murthy N., Xu M. C., Schuck S., Kunisawa J., Shastri N., Fréchet J. M.. A macromolecular delivery vehicle for protein-based vaccines:acid-degradable protein-loaded microgels[J]. J. Proc. Matl. Acad. Sci., 2003,100(9):4995-5000. doi: 10.1073/pnas.0930644100

    3. [3]

      Wang J. Z., Loh K. P., Wang Z., Yan Y. L., Zhong Y. L., Xu Q. H., Ho P. C.. Fluorescent nanogel of arsenic sulfide nanoclusters[J]. Angew. Chem. Int. Ed., 2009,48(34):6282-6285. doi: 10.1002/anie.200900586

    4. [4]

      Gota C., Okabe K., Funatsu T., Harada Y., Uchiyama S.. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry[J]. J. Am. Chem. Soc., 2009,131(8):2766-2767. doi: 10.1021/ja807714j

    5. [5]

      Nayak S., Lyon L. A.. Ligand-functionalized core/shell microgels with permselective shells[J]. Angew. Chem. Int. Ed., 2004,43(48):6706-6709. doi: 10.1002/(ISSN)1521-3773

    6. [6]

      Terashima T., Nomura A., Ito M., Ouchi M., Sawamoto M.. Star-polymer-catalyzed living radical polymerization:microgel-core reaction vessel by tandem catalyst interchange[J]. Angew. Chem. Int. Ed., 2011,50(34):7892-7895. doi: 10.1002/anie.v50.34

    7. [7]

      Lu Y., Mei Y., Drechsler M., Ballauff M.. Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks[J]. Angew. Chem. Int. Ed., 2006,45(5):813-816. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Ladet S., David L., Domard A.. Multi-membrane hydrogels[J]. Nature, 2008,452(7183):76-79. doi: 10.1038/nature06619

    9. [9]

      Cheng E. J., Xing Y. Z., Chen P., Yang Y., Sun Y. W., Zhou D. J., Xu L. J., Fan Q. H., Liu D. S.. A pH-triggered, fast-responding DNA hydrogel[J]. Angew. Chem. Int. Ed., 2009,121(41):7796-7799. doi: 10.1002/ange.v121:41

    10. [10]

      Nowak A. P., Breedveld V., Pakstis L. M., Ozbas B., Pine D. J., Pochan D., Deming T. J.. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature, 2002,417(6887):424-428. doi: 10.1038/417424a

    11. [11]

      Jeong B., Bae Y. H., Lee D. S., Kim S. W.. Biodegradable block copolymers as injectable drug-delivery systems[J]. Nature, 1997,388(6645):860-862. doi: 10.1038/42218

    12. [12]

      Murdan S.. Electro-responsive drug delivery from hydrogels[J]. J. Control. Release, 2003,92(12):1-17.  

    13. [13]

      Moriyama K., Minamihata K., Wakabayashi R., Goto M., Kamiya N.. Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells[J]. Chem. Commun., 2014,50(44):5895-5898. doi: 10.1039/C3CC49766F

    14. [14]

      Nakahata M., Takashima Y., Harada A.. Redox-responsive macroscopic gel assembly based on discrete dual interactions[J]. Angew. Chem. Int. Ed., 2014,53(14):3617-3621. doi: 10.1002/anie.v53.14

    15. [15]

      Collier J. H., Hu B. H., Ruberti J. W., Zhang J., Shum P., Thompson D. H., Messersmith P. B.. Thermally and photochemically triggered self-assembly of peptide hydrogels[J]. J. Am. Chem. Soc., 2001,123(38):9463-9464. doi: 10.1021/ja011535a

    16. [16]

      Haines L. A., Rajagopal K., Ozbas B., Salick D. A., Pochan D. J., Schneider J. P.. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide[J]. J. Am. Chem. Soc., 2005,127(48):17025-17029. doi: 10.1021/ja054719o

    17. [17]

      Naficy S., Brown H. R., Razal J. M., Spinks G. M., Whitten P. G.. Progress toward robust polymer hydrogels[J]. Aust. J. Chem., 2011,64(8):1007-1025. doi: 10.1071/CH11156

    18. [18]

      Cohen Y., Ramon O., Kopelman I. J., Mizrahi S.. Characterization of inhomogeneous polyacrylamide hydrogels[J]. J. Polym. Sci., Part B:Polym. Phys., 1992,30(9):1055-1067. doi: 10.1002/polb.1992.090300913

    19. [19]

      Hsu T. P., Ma D. S., Cohen C.. Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport properties[J]. Polymer, 1983,24(10):1273-1278. doi: 10.1016/0032-3861(83)90058-7

    20. [20]

      Wu D. C., Loh X. J., Wu Y. L., Lay C. L., Liu Y.. 'Living' controlled in situ gelling systems:thiol-disulfide exchange method toward tailor-made biodegradable hydrogels[J]. J. Am. Chem. Soc., 2010,132(43):15140-15143. doi: 10.1021/ja106639c

    21. [21]

      Fernandes P. A., Ramos M. J.. Theoretical insights into the mechanism for thiol/disulfide exchange[J]. Chem-Eur. J., 2004,10(1):257-266. doi: 10.1002/(ISSN)1521-3765

    22. [22]

      You Y. Z., Yu Z. Q., Cui M. M., Hong C. Y.. Preparation of photoluminescent nanorings with controllable bioreducibility and stimuli-responsiveness[J]. Angew. Chem. Int. Ed., 2010,49(6):1099-1102. doi: 10.1002/anie.v49:6

    23. [23]

      Cheng W. R., Wu D. C., Liu Y.. Michael addition polymerization of trifunctional amine and acrylic monomer:a versatile platform for development of biomaterials[J]. Biomacromolecules, 2016,17(10):3115-3126. doi: 10.1021/acs.biomac.6b01043

    24. [24]

      Drury J. L., Mooney D. J.. Hydrogels for tissue engineering:scaffold design variables and applications[J]. Biomaterials, 2003,24(24):4337-4351. doi: 10.1016/S0142-9612(03)00340-5

    25. [25]

      Meng F. H., Hennink W. E., Zhong Z. Y.. Reduction-sensitive polymers and bioconjugates for biomedical applications[J]. Biomaterials, 2009,30(12):2180-2198. doi: 10.1016/j.biomaterials.2009.01.026

    26. [26]

      Li D. W., Bu Y. Z., Zhang L. N., Wang X., Yang Y. Y., Zhuang Y. P., Yang F., Shen H., Wu D. C.. Facile construction of pH-and redox-responsive micelles from a biodegradable poly(beta-hydroxyl amine) for drug delivery[J]. Biomacromolecules, 2016,17(1):291-300. doi: 10.1021/acs.biomac.5b01394

    27. [27]

      Zhang J., Yang F., Shen H., Wu D. C.. Controlled formation of microgels/nanogels from a disulfide-linked core/shell hyperbranched polymer[J]. ACS Macro Lett., 2012,1(11):1295-1299. doi: 10.1021/mz300489n

    28. [28]

      Hu X. B., Tong Z., Lyon L. A.. Multicompartment core/shell microgels[J]. J. Am. Chem. Soc., 2010,132(33):11470-11472. doi: 10.1021/ja105616v

    29. [29]

      Lu Y., Ballauff M.. Thermosensitive core-shell microgels:from colloidal model systems to nanoreactors[J]. Prog. Polym. Sci., 2011,36(6):767-792. doi: 10.1016/j.progpolymsci.2010.12.003

    30. [30]

      Xiong M. H., Bao Y., Yang X., Wang Y. Z., Sun B. L., Wang J.. Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery[J]. J. Am. Chem. Soc., 2012,134(9):4355-4362. doi: 10.1021/ja211279u

    31. [31]

      Chen Y., Chen H. R., Zeng D. P., Tian Y. B., Chen F., Feng J. W., Shi J. L.. Core/shell structured hollow mesoporous nanocapsules:a potential platform for simultaneous cell imaging and anticancer drug delivery[J]. ACS Nano, 2010,4(10):6001-6013. doi: 10.1021/nn1015117

    32. [32]

      Mitragotri S., Anderson D. G., Chen X. Y., Chow E. K., Ho D., Kabanov A. V., Karp J. M., Kataoka K., Mirkin C. A., Petrosko S. H.. Accelerating the translation of nanomaterials in biomedicine[J]. ACS Nano, 2015,9(7):6644-6654. doi: 10.1021/acsnano.5b03569

    33. [33]

      Zhang J., Jia J. P., Kim J. P., Yang F., Wang X., Shen H., Xu S. J., Yang J., Wu D. C.. Construction of versatile multilayered composite nanoparticles from a customized nanogel template[J]. Bioactive Materials, 2017. doi: 10.1016/j.bioactmat.2017.06.003

    34. [34]

      Zhang J., Jia J. P., Kim J. P., Shen H., Yang F., Zhang Q., Xu M., Bi W. Z., Wang X., Yang J., Wu D. C.. Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration[J]. Adv. Mater., 2017,29(17)1605546. doi: 10.1002/adma.v29.17

    35. [35]

      Xu S. J., Liu J. H., Zhang L. C., Yang F., Tang P. F., Wu D. C.. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair[J]. J. Mater. Chem. B, 2017,5(30):6110-6118. doi: 10.1039/C7TB00790F

    36. [36]

      Zhuang Y. P., Shen H., Yang F., Wang X., Wu D. C.. Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures[J]. RSC Adv., 2016,6(59):53804-53812. doi: 10.1039/C6RA08404D

    37. [37]

      Huang D., Yang F., Wang X., Shen H., You Y. Z., Wu D. C.. Facile synthesis and self-assembly behaviour of pH-responsive degradable polyacetal dendrimers[J]. Polym. Chem., 2016,7(40):6154-6158. doi: 10.1039/C6PY01511E

    38. [38]

      Wang L. H., Wu D. C., Xu H. X., You Y. Z.. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core[J]. Angew. Chem. Int. Ed., 2016,55(2):755-759. doi: 10.1002/anie.201508695

    39. [39]

      Liu B. X., Zhou X., Yang F., Shen H., Wang S. G., Zhang B., Zhi G., Wu D. C.. Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging[J]. Polym. Chem., 2014,5(5):1693-1701. doi: 10.1039/C3PY01144E

    40. [40]

      Wang X., Wang J., Yang Y. Y., Yang F., Wu D. C.. Fabrication of multi-stimuli responsive supramolecular hydrogels based on host-guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer[J]. Polym. Chem., 2017,8(26):3901-3909. doi: 10.1039/C7PY00698E

    41. [41]

      Li D. W., Niu Y. G., Yang Y. Y., Wang X., Yang F., Shen H., Wu D. C.. Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers[J]. Chem. Commun., 2015,51(39):8296-8299. doi: 10.1039/C5CC01338K

    42. [42]

      Wang X., Li D., Yang F., Shen H., Li Z. B., Wu D. C.. Controlled cross-linking strategy:from hybrid hydrogels to nanoparticle macroscopic aggregates[J]. Polym. Chem., 2013,4(17):4596-4600. doi: 10.1039/c3py00811h

    43. [43]

      Yang Y. Y., Wang X., Hu Y., Hu H., Wu D. C., Xu F. J.. Bioreducible POSS-cored star-shaped polycation for efficient gene delivery[J]. ACS Appl. Mater. Interfaces, 2014,6(2):1044-1052. doi: 10.1021/am404585d

    44. [44]

      Wang X., Yang Y. Y., Gao P. Y., Li D., Yang F., Shen H., Guo H. X., Xu F. J., Wu D. C.. POSS dendrimers constructed from a 1 → 7 branching monomer[J]. Chem. Commun., 2014,50(46):6126-6129. doi: 10.1039/c4cc01859a

    45. [45]

      Bu Y. Z., Sun G. F., Zhang L. C., Liu J. H., Yang F., Tang P. F., Wu D. C.. POSS-modified PEG adhesives for wound closure[J]. Chinese J. Polym. Sci., 2017,35(10):1231-1242. doi: 10.1007/s10118-017-1958-x

    46. [46]

      Wang X., Yang Y. Y., Zhuang Y. P., Gao P. Y., Yang F., Shen H., Guo H. X., Wu D. C.. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery[J]. Biomacromolecules, 2016,17(9):2920-2929. doi: 10.1021/acs.biomac.6b00744

    47. [47]

      Wang X., Yang Y. Y., Zuo Y. F., Yang F., Shen H., Wu D. C.. Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle[J]. Chem. Commun., 2016,52(30):5320-5323. doi: 10.1039/C6CC01706A

    48. [48]

      Li L. Y., Song C. F., Jennings M., Thayumanavan S.. Photoinduced heterodisulfide metathesis for reagent-free synthesis of polymer nanoparticles[J]. Chem. Commun., 2015,51(8):1425-1428. doi: 10.1039/C4CC08000A

    49. [49]

      Wang L. L., Li L., Wang X., Huang D., Yang F., Shen H., Li Z. C., Wu D. C.. UV-triggered thiol-disulfide exchange reaction towards tailored biodegradable hydrogels[J]. Polym. Chem., 2016,7(7):1429-1438. doi: 10.1039/C5PY01925G

    50. [50]

      Wang J., Wang X., Yang F., Shen H., You Y. Z., Wu D. C.. Effect of topological structures on the self-assembly behavior of supramolecular amphiphiles[J]. Langmuir, 2015,31(51):13834-13841. doi: 10.1021/acs.langmuir.5b03823

    51. [51]

      Wang J., Wang X., Yang F., Shen H., You Y. Z., Wu D. C.. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation[J]. Langmuir, 2014,30(43):13014-13020. doi: 10.1021/la503295z

    52. [52]

      Wang J., Li B. X., Wang X., Yang F., Shen H., Wu D. C.. Morphological evolution of self-assembled structures induced by the molecular architecture of supra-amphiphiles[J]. Langmuir, 2016,32(51):13706-13715. doi: 10.1021/acs.langmuir.6b03550

    53. [53]

      Wang X., Yang Y. Y., Yang F., Shen H., Wu D. C.. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging[J]. Polymer, 2017,118(2):75-84.  

    54. [54]

      Wang X., Yang Y. Y., Gao P. Y., Yang F., Shen H., Guo H. X., Wu D. C.. Synthesis, self-assembly, and photoresponsive behavior of tadpole-shaped azobenzene polymers[J]. ACS Macro Lett, 2015,4(12):1321-1326. doi: 10.1021/acsmacrolett.5b00698

    55. [55]

      Gong J. P., Katsuyama Y., Kurokawa T., Osada Y.. Double-network hydrogels with extremely high mechanical strength[J]. Adv. Mater., 2003,15(14):1155-1158. doi: 10.1002/adma.200304907

    56. [56]

      Liu X. Y., Zhong M., Shi F. K., Xu H., Xie X. M.. Multi-bond network hydrogels with robust mechanical and self-healable properties[J]. Chinese J. Polym. Sci., 2017,35(10):1253-1267. doi: 10.1007/s10118-017-1971-0

    57. [57]

      Shi F. K., Zhong M., Zhang L. Q., Liu X. Y., Xie X. M.. Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking-the roles of the dual crosslinking points[J]. Chinese J. Polym. Sci., 2017,35(1):25-35. doi: 10.1007/s10118-017-1869-x

    58. [58]

      Yang Y. Y., Wang X., Yang F., Shen H., Wu D. C.. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Adv. Mater., 2016,28(33):7178-7184. doi: 10.1002/adma.201601742

    59. [59]

      Bu Y. Z., Shen H., Yang F., Yang Y. Y., Wang X., Wu D. C.. Construction of tough, in situ forming double-network hydrogels with good biocompatibility[J]. ACS Appl. Mater. Interfaces, 2017,9(3):2205-2212. doi: 10.1021/acsami.6b15364

    60. [60]

      Bu Y. Z., Zhang L. C., Liu J. H., Zhang L. H., Li T. T., Shen H., Wang X., Yang F., Tang P. F., Wu D. C.. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations[J]. ACS Appl. Mater. Interfaces, 2016,8(20):12674-12683. doi: 10.1021/acsami.6b03235

  • 加载中
    1. [1]

      Yuequan WangCongtian WuChengcheng FengQin ChenZhonggui HeShenwu ZhangCong LuoJin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    4. [4]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    5. [5]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    6. [6]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    7. [7]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    8. [8]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    9. [9]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    10. [10]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    11. [11]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    12. [12]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    13. [13]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    14. [14]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    15. [15]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    16. [16]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    17. [17]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    18. [18]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    19. [19]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    20. [20]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return