Citation: De-Qian Peng, Xin-Wen Yan, Shao-Wen Zhang, Xiao-Fang Li. Syndiotactic Polymerization of Styrene and Copolymerization with Ethylene Catalyzed by Chiral Half-sandwich Rare-earth Metal Dialkyl Complexes[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 222-230. doi: 10.1007/s10118-018-2060-8 shu

Syndiotactic Polymerization of Styrene and Copolymerization with Ethylene Catalyzed by Chiral Half-sandwich Rare-earth Metal Dialkyl Complexes

  • Corresponding author: Shao-Wen Zhang, swzhang@bit.edu.cn Xiao-Fang Li, xfli@bit.edu.cn
  • These authors contributed equally to this work.
    Invited paper for special issue of "Metal-Catalyzed Polymerization"
  • Received Date: 17 September 2017
    Accepted Date: 7 October 2017
    Available Online: 30 November 2017

  • The syndiotactic polymerization of styrene (St) and the copolymerization of St with ethylene (E) were carried out by using a series of chiral half-sandwich rare-earth metal dialkyl complexes (Cpx*) as the catalysts. The complexes are Ln(CH2SiMe3)2(THF) (1-4:Ln=Sc (1), Ln=Lu (2), Ln=Y (3), Ln=Dy (4)) bearing chiral cyclopentadienyl ligand containing bulky cylcohexane derivatives in the presence of activator and AliBu3. For the St polymerization, a high activity up to 3.1×106 g of polymer molLn-1·h-1 and a high syndiotactic selectivity more than 99% were achieved. The resulting syndiotactic polystyrenes (sPSs) have the molecular weights (Mn) ranging from 3700 g·mol-1 to 6400 g·mol-1 and the molecular weight distributions (Mw/Mn) from 1.40 to 5.03. As for the copolymerization of St and E, the activity was up to 2.4×106 g of copolymer molSc-1·h-1·MPa-1, giving random St-E copolymers containing syndiotactic polystyrene sequences with different St content in the range of 15 mol%-58 mol%. These results demonstrate that the bulky cyclopentadienyl ligands of the chiral half-sandwich rare-earth metal complexes effectively inhibit the continued insertion of St monomers into the (co)polymer chain to some extent in comparison with the known half-sandwich rare-earth metal complexes.
  • 加载中
    1. [1]

      Martinez S., Exposito M. T., Ramos J., Cruz V., Martinez M. C., Lopez M., Munoz-Escalona A., Martinez-Salazar J.. An experimental and computational evaluation of ethylene/styrene copolymerization with a homogeneous single-site titanium(Ⅳ)-constrained geometry catalyst[J]. J. Polym. Sci., Part A:Polym. Chem., 2005,43(4):711-725. doi: 10.1002/pola.20456

    2. [2]

      Nishiura M., Hou Z.. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls[J]. Nat. Chem., 2010,2(4):257-268. doi: 10.1038/nchem.595

    3. [3]

      Nishiura M., Guo F., Hou Z.. Half-sandwich rare-earthcatalyzed olefin polymerization, carbometalation, and hydroarylation[J]. Accounts Chem. Res., 2015,48(8):2209-2220. doi: 10.1021/acs.accounts.5b00219

    4. [4]

      Hatamzadeh M., Jaymand M., Massoumi B.. Graft copolymerization of thiopheneonto polystyrene synthesized vianitroxide-mediated polymerizationand its polymer-clay nanocomposite[J]. Polym. Int., 2014,63:402-412. doi: 10.1002/pi.2014.63.issue-3

    5. [5]

      Ishihara N., Seimiya T., Kuramoto M., Uoi M.. Crystalline syndiotactic polystyrene[J]. Macromolecules, 1986,19:2464-2465. doi: 10.1021/ma00163a027

    6. [6]

      Ishihara N., Kuramoto M., Uoi M.. Stereospecific polymerization of styrene giving the syndiotactic polymer[J]. Macromolecules, 1988,21:3356-3360. doi: 10.1021/ma00190a003

    7. [7]

      Zambelli A., Oliva L., Pellecchia C.. Soluble catalysts for syndiotactic polymerization of styrene[J]. Macromolecules, 1989,22:2129-2130. doi: 10.1021/ma00195a021

    8. [8]

      Averbuj C., Tish E., Eisen M. S.. Stereoregular polymerization of α-olefins catalyzed by chiral group 4 benzamidinate complexes of C1 and C3 symmetry[J]. J. Am. Chem. Soc., 1998,120:8640-8646. doi: 10.1021/ja980392y

    9. [9]

      Okuda J., Masoud E.. Syndiospecific polymerization of styrene using methylaluminoxane-activatedbis(phenolato) titanium complexes[J]. Macromol. Chem. Phys., 1998,199:543-545. doi: 10.1002/(ISSN)1521-3935

    10. [10]

      Capacchione C., Proto A., Ebeling H., Mulhaupt R., Moller K., Spaniol T. P., Okuda J.. Ancillary ligand effect on single-site styrene polymerization:isospecificityof group 4 metal bis(phenolate) catalysts[J]. J. Am. Chem. Soc., 2003,125:4964-4965. doi: 10.1021/ja029968g

    11. [11]

      Liguori D., Centore R., Tuzi A., Grisi F., Sessa I., Zambelli A.. Titanium monoamidinate-MAO catalysts:some information about active species and stereochemical polymerization mechanisms[J]. Macromolecules, 2003,36:5451-5458. doi: 10.1021/ma034249n

    12. [12]

      Zhang H., Nomura K.. Living copolymerization of ethylene with styrene catalyzed by (cyclopentadienyl)(ketimide) titanium(Ⅳ) complex-MAO catalyst system[J]. J. Am. Chem. Soc., 2005,127:9364-9365. doi: 10.1021/ja052198z

    13. [13]

      Martinez S., Exposito M. T., Ramos J., Cruz V., Martinez M. C., Lopez M., Escalona A. M., Salazar J. M.. An experimental and computational evaluation of ethylene/styrene copolymerization with a homogeneous single-site titanium(Ⅳ)-constrained geometry catalyst[J]. J. Polym. Sci., Part A:Polym. Chem., 2005,43:711-725. doi: 10.1002/pola.20456

    14. [14]

      Kirillov E., Razavi A., Carpentier J. F.. Syndiotactic-enriched propylene-styrene copolymers usingfluorenyl-based halftitanocene catalysts[J]. J. Mol. Catalysis A:Chem., 2006,249:230-235. doi: 10.1016/j.molcata.2006.01.026

    15. [15]

      Ban H. T., Kase T., Kawabe M., Miyazawa A., Ishihara T., Hagihara H., Tsunogae Y., Murata M., Shiono T.. A new approach to styrenic thermoplastic elastomers:synthesisand characterization of crystalline styrene-butadiene-styrene triblock copolymers[J]. Macromolecules, 2006,39:171-176. doi: 10.1021/ma051576h

    16. [16]

      Zhang H., Nomura K.. Living copolymerization of ethylene with styrene catalyzed by (cyclopentadienyl)(ketimide)-titanium(Ⅳ) complex-MAO catalyst system:effect of anionic ancillary donor ligand[J]. Macromolecules, 2006,39:5266-5274. doi: 10.1021/ma060503a

    17. [17]

      Ban H. T., Nishii K., Tsunogae Y., Shiono T.. Synthesis and characterization of norbornene-ethylene-styrene terpolymers with a substituted ansa-fluorenylamidodimethyltitanium-based catalyst[J]. J. Polym. Sci., Part A:Polym. Chem., 2007,45:2765-2773. doi: 10.1002/(ISSN)1099-0518

    18. [18]

      Cuomo C., Serra M. C., Maupoey M. G., Grassi A.. Copolymerization of styrene with butadiene and isoprene catalyzed by the monocyclopentadienyl titanium complexTi(η5-C5H5)(η2-MBMP)Cl[J]. Macromolecules, 2007,40:7089-7097. doi: 10.1021/ma071312q

    19. [19]

      Son K., Joge F., Waymouth R. M.. Copolymerization of styrene and ethylene at high temperature with titanocenes containing a pendant amine donor[J]. Macromolecules, 2008,41:9663-9668. doi: 10.1021/ma801853f

    20. [20]

      Yoon S. W., Kim Y., Kim S. K., Kim S. Y., Do Y., Park S.. Novel dinuclear half-titanocene-producing styrene/ethylene copolymers containing syndiotactic styrene/styrene sequences[J]. Macromol. Chem. Phys., 2011,212:785-789. doi: 10.1002/macp.v212.8

    21. [21]

      Nomura K.. Half-titanocenes containing anionic ancillary donor ligands:effective catalyst precursors for ethylene/styrene copolymerization[J]. Catalysts, 2013,3:157-175. doi: 10.3390/catal3010157

    22. [22]

      Wang W., Zheng G., Wang H.. Syndiospecific polymerization of styreneby half-titanocene catalysts with the sulfur-containing donor ligand[J]. e-Polymers, 2014,14(4):277-281.  

    23. [23]

      Kirillov E., Dash A. K., Rodrigues A. S., Carpentier J. F.. Ansa-metallocene and half-sandwich complexes of group-3 metals and lanthanides incorporating fluorenyl-basedligands:from synthesis to catalytic applications[J]. C. R. Chim., 2006,9:1151-1157. doi: 10.1016/j.crci.2005.12.005

    24. [24]

      Hou Z., Luo Y., Li X.. Cationic rare earth metal alkyls as novel catalysts for olefin polymerization and copolymerization[J]. J. Organometa. Chem., 2006,691:3114-3121. doi: 10.1016/j.jorganchem.2006.01.055

    25. [25]

      Kirillov E., Lehmann C. W., Razavi A., Carpentier J. F.. Highly syndiospecific polymerization of styrene catalyzed by allyl lanthanide complexes[J]. J. Am. Chem. Soc., 2004,126:12240-12241. doi: 10.1021/ja0455695

    26. [26]

      Luo Y., Baldamus J., Hou Z.. Scandium half-metallocenecatalyzed syndiospecific styrene polymerizationand styrene-ethylene copolymerization:unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers[J]. J. Am. Chem. Soc., 2004,126:13910-13911. doi: 10.1021/ja046063p

    27. [27]

      Hitzbleck J., Okuda J.. Synthesis, characterization, and polymerization activity of the scandium half-sandwich complex[Sc(η5-C5Me4{SiMe2(C6F5)})(CH2SiMe3)2(THF)][J]. Z. Anorg. Allg. Chem., 2006,632:1947-1949. doi: 10.1002/(ISSN)1521-3749

    28. [28]

      Hitzbleck J., Beckerle K., Okuda J.. Half-sandwich dibenzyl complexes of scandium:synthesis, structure, and styrene polymerization activity[J]. J. Organometa. Chem., 2007,692:4702-4707. doi: 10.1016/j.jorganchem.2007.06.020

    29. [29]

      Jaroschik F., Shima T., Li X., Mori K., Ricard L., Goff X. F. L., Nief F., Hou Z.. Synthesis, characterization, and reactivity of mono(phospholyl)lanthanoid(Ⅲ) bis(dimethylaminobenzyl) complexes[J]. Organometallics, 2007,26:5654-5660. doi: 10.1021/om7005936

    30. [30]

      Nishiura M., Mashiko T., Hou Z.. Synthesis and styrene polymerisation catalysis of η5-and η1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes[J]. Chem. Commun., 2008:2019-2021.  

    31. [31]

      Fang X., Li X., Hou Z., Assoud J., Zhao R.. 1, 2-Azaborolyl-ligated half-sandwich complexes of scandium(Ⅲ) and lutetium(Ⅲ):Synthesis, structures, and syndiotactic polymerization of styrene[J]. Organometallics, 2009,28:517-522. doi: 10.1021/om800734v

    32. [32]

      Xu X., Chen Y., Sun J.. Indenyl abstraction versus alkyl abstraction of[(indenyl)ScR2(thf)] by[Ph3C] [B(C6F5)4]:Aspecific and syndiospecific styrene polymerization[J]. Chem. Eur. J., 2009,15:846-850. doi: 10.1002/chem.200802220

    33. [33]

      Bonnet F., Violante C. D. C., Roussel P., Mortreux A., Visseaux M.. Unprecedented dual behaviour of a half-sandwichscandium-basedinitiator for both highly selective isoprene and styrene polymerization[J]. Chem. Commun., 2009:3380-3382.

    34. [34]

      Luo Y., Feng X., Wang Y., Fan S., Chen J., Lei Y., Liang H.. Half-sandwich scandium bis(amide) complexes as efficient catalyst precursors for syndiospecific polymerization of styrene[J]. Organometallics, 2011,30:3270-3274. doi: 10.1021/om101047h

    35. [35]

      Lei Y., Wang Y., Luo Y.. Synthesis, characterization, and styrene polymerization catalysis of pyridyl-functionalized indenyl rare earth metal bis(silylamide) complexes[J]. J. Organometa. Chem., 2013,738:24-28. doi: 10.1016/j.jorganchem.2013.04.014

    36. [36]

      Pan Y., Rong W., Jian Z., Cui D.. Ligands dominate highly syndioselective polymerization of styreneby using constrainedgeometry-configuration rare-earth metal precursors[J]. Macromolecules, 2012,45:1248-1253. doi: 10.1021/ma202558g

    37. [37]

      Lin F., Wang X., Pan Y., Wang M., Liu B., Luo Y., Cui D.. Nature of the entire range of rare earth metal-based cationic catalysts for highly active and syndioselective styrene polymerization[J]. ACS Catal., 2016,6:176-185. doi: 10.1021/acscatal.5b02334

    38. [38]

      Li X., Wang X., Tong X., Zhang H., Chen Y., Liu Y., Liu H., Wang X., Nishiura M., He H., Lin Z., Zhang S., Hou Z.. Aluminum effects in the syndiospecific copolymerization of styrene with ethylene by cationic fluorenyl scandium alkyl catalysts[J]. Organometallics, 2013,32:1445-1458. doi: 10.1021/om3011036

    39. [39]

      Hou Z., Wakatsuki Y.. Recent developments in organolanthanide polymerization catalysts[J]. Coordin. Chem. Rev., 2002,231:1-22. doi: 10.1016/S0010-8545(02)00111-X

    40. [40]

      Rodrigues A. S., Carpentier J. F.. Groups 3 and 4 single-site catalysts for styrene-ethylene and styrene-olefin copolymerization[J]. Coordin. Chem. Rev., 2008,252:2137-2154. doi: 10.1016/j.ccr.2007.11.023

    41. [41]

      Evans W. J., DeCoster D. M., Greaves J.. Field desorption mass spectrometry studies of the samarium-catalyzed polymerization of ethylene under hydrogen[J]. Macromolecules, 1995,28:7929-7936. doi: 10.1021/ma00127a046

    42. [42]

      Koo K., Fu P., Marks T. J.. Organolanthanide-mediated silanolytic chain transfer processes Scope and mechanism of single reactor catalytic routes to silapolyolefins[J]. Macromolecules, 1999,32:981-988.  

    43. [43]

      Peng D., Du G., Zhang P., Yao B., Li X., Zhang S.. Regioand stereochemical control in ocimene polymerization by half-sandwich rare-earth metal dialkyl complexes[J]. Macromol. Rapid Commun., 2016,37:987-992. doi: 10.1002/marc.v37.12

    44. [44]

      Li W., Zhang Z., Xiao D., Zhang X.. Synthesis of chiral hydroxyl phospholanes from D-mannitol and their use in asymmetric catalytic reactions[J]. J. Org. Chem., 2000,65:3489-3496. doi: 10.1021/jo000066c

    45. [45]

      Kobayashi Y., Kokubo Y., Aisaka T., Saigo K.. Hydrogen-bonding sheets in crystals for chirality recognition:synthesis and application of (2S, 3S)-2, 3-dihydroxy-and (2S, 3S)-2, 3-dibenzyloxy-1, 4-bis(hydroxyamino)butanes[J]. Tetrahedron-Asymmetry, 2008,19:2536-2541. doi: 10.1016/j.tetasy.2008.11.006

    46. [46]

      Lo H., Chang Y., Yan T.. Chiral pool based efficient synthesis of the aminocyclitol core and furanoside of (-)-hygromycin A:Formal total synthesis of (-)-hygromycin A[J]. Organic Lett., 2012,14(23):5896-5899. doi: 10.1021/ol3028237

    47. [47]

      Ye B., Cramer N.. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C-H functionalization[J]. Science, 2012,338(6106):504-506. doi: 10.1126/science.1226938

    48. [48]

      Wodrich M. D., Ye B., Gonthier J. F., Corminboeuf C., Cramer N.. Ligand-controlled regiodivergent pathways of rhodium(Ⅲ)-catalyzed dihydroisoquinolone synthesis:experimental and computational studies of different cyclopentadienyl ligands[J]. Chem. Eur. J., 2014,20:15409-15418. doi: 10.1002/chem.v20.47

    49. [49]

      Li X., Nishiura M., Hu L., Mori K., Hou Z.. Alternating and random copolymerization of isoprene and ethylene catalyzed by cationic half-sandwich scandium alkyls[J]. J. Am. Chem. Soc., 2009,131:13870-13882. doi: 10.1021/ja9056213

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    6. [6]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    7. [7]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    8. [8]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    9. [9]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    13. [13]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    14. [14]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    17. [17]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    20. [20]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return