Citation: Hai Wang, Chun-Ji Wu, Dong-Mei Cui, Yong-Feng Men. Equilibrium Crystallization Temperature of Syndiotactic Polystyrene γ Form[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 749-755. doi: 10.1007/s10118-018-2059-1 shu

Equilibrium Crystallization Temperature of Syndiotactic Polystyrene γ Form

  • Corresponding author: Yong-Feng Men, men@ciac.ac.cn
  • Received Date: 22 August 2017
    Accepted Date: 7 October 2017
    Available Online: 29 January 2018

  • The crystallization behavior of syndiotactic polystyrene (sPS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. On the basis of the differential scanning calorimetric results, it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness, which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization. Further temperature dependent small-angle X-ray scattering (SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition, involving three different regimes:lamellae stable region (25-90℃), melt-recrystallization region (90-185℃) and pre-phase transition region (185-195℃). As a result, recrystallization line, equilibrium recrystallization line and melting line were developed for the sPS γ form crystallization process. Since the melt of γ form involved a γ-to-α/β form phase transition, the melting line was also denoted as the phase transition line in this special case. Therefore, the equilibrium crystallization temperature and melting (phase transition) temperatures were determined at around 390 and 220℃ on the basis of the thermodynamic phase diagram of the sPS γ form.
  • 加载中
    1. [1]

      Auriemma F., Petraccone V., Poggetto F. D., de Rosa C., Guerra G., Manfredi C., Corradini P.. Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal (α) crystalline form[J]. Macromolecules, 1993,26(15):3772-3777. doi: 10.1021/ma00067a008

    2. [2]

      Petraccone V., Auriemma F., Poggetto F. D., de Rosa C., Guerra G., Corradini P.. On the structure of the mesomorphic form of syndiotactic polystyrene[J]. Makromol. Chem., 1993,194(5):1335-1345. doi: 10.1002/macp.1993.021940508

    3. [3]

      Ishihara N., Seiniya T., Kuramoto M., Uoi M.. Crystalline syndiotactic polystyrene[J]. Macromolecules, 1986,19(9):2464-2465. doi: 10.1021/ma00163a027

    4. [4]

      Guerra G., de Rosa C., Petraccone V., Corradini P.. Polymorphism in melt crystallized syndiotactic polystyrene samples[J]. Macromolecules, 1990,23(5):1539-1544. doi: 10.1021/ma00207a050

    5. [5]

      de Rosa C., Guerra G., Petraccone V., Corradini P.. Crystal structure of the α-form of syndiotactic polystyrene[J]. Polym. J., 1991,23(12):1435-1442. doi: 10.1295/polymj.23.1435

    6. [6]

      Chatani Y., Shimane Y., Inoue Y., Inagaki T., Ishioka T.. Structural study of syndiotactic polystyrene 1[J]. polymorphism. Polymer, 1992,33(3):488-492.  

    7. [7]

      Corradini P., de Rosa C., Guerra G., Napolitano R., Petraccone V., Pirozzi B.. Confirmational and packing energy of the crystalline α modification of syndiotactic polystyrene[J]. Eur. Polym. J., 1994,30(10):1173-1177. doi: 10.1016/0014-3057(94)90255-0

    8. [8]

      de Rosa C.. Crystal structure of the trigonal modification (α form) of syndiotactic polystyrene[J]. Macromolecules, 1996,29(26):8460-8465. doi: 10.1021/ma960905q

    9. [9]

      Cartier L., Okihara T., Lotz B.. The α" superstructure of syndiotactic polystyrene:a frustrated structure[J]. Macromolecules, 1998,31(10):3303-3310.  

    10. [10]

      Lotz B.. An intrinsic crystallographic disorder in the frustrated α" phase of syndiotactic polystyrene[J]. Polymer, 2015,56(15):245-251.  

    11. [11]

      Vittoria V., Filho A. R., de Candia F.. Structural organization of syndiotactic polystyrene films crystallized in the β form[J]. J. Macromol. Sci. Part B, 1992,31(2):133-148. doi: 10.1080/00222349208215508

    12. [12]

      De Rosa C., Rapacciuolo M., Guerra G., Petraccone V., Corradini P.. On the crystal structure of the orthorhombic form of syndiotactic polystyrene[J]. Polymer, 1992,33(7):1423-1428. doi: 10.1016/0032-3861(92)90117-F

    13. [13]

      Chatani Y., Shimane Y., Ijitsu T., Yukinari T.. Structural study on syndiotactic polystyrene 3[J]. crystal structure of planar form I. Polymer, 1993,34(8):1625-1629.  

    14. [14]

      Napolitano R., Pirozzi B., Chimica D., Ii F.. The role of molecular mechanics in the prediction of the chain conformation of polymers in the crystalline state:syndiotactic polymers[J]. Macromol. Theory. Simul., 1999,8(1):15-25. doi: 10.1002/(ISSN)1521-3919

    15. [15]

      Tosaka M., Tsuji M., Kohjiya S., Cartier L., Lotz B.. Crystallization of syndiotactic polystyrene in β-form[J]. 4. crystal structure of melt-grown modification. Macromolecules, 1999,32(15):4905-4911.  

    16. [16]

      de Candia F., Romano G., Russo R., Vittoria V.. Solvent crystallized syndiotactic polystyrene[J]. thermal and dynamic-mechanical behavior. Colloid Polym. Sci., 1993,271(5):454-459.  

    17. [17]

      Handa Y. P., Zhang Z., Wong B.. Effect of compressed CO2 on phase transitions and polymorphism in syndiotactic polystyrene[J]. Macromolecules, 1997,30(26):8499-8504. doi: 10.1021/ma9712209

    18. [18]

      Naddeo C., Guadagno L., Aciemo D., Vittoria V., Chimica I., Salemo U., Ponte V., Melillo D., Salemo F.. Studies of the γ to α transition in syndiotactic polystyrene[J]. Macromol. Symp., 1999,138(1):209-214. doi: 10.1002/masy.v138.1

    19. [19]

      Rizzo P., Albunia A. R., Guerra G.. Polymorphism of syndiotactic polystyrene:γ phase crystallization induced by bulky non-guest solvents[J]. Polymer, 2005,46(23):9549-9554. doi: 10.1016/j.polymer.2005.07.063

    20. [20]

      Immirzi A., de Candia F., Iannelli P., Zambelli A.. Solvent-induced polymorphism in syndiotactic polystyrene[J]. Makromol. Chem., Rapid Commun., 1988,9:761-764. doi: 10.1002/marc.1988.030091108

    21. [21]

      Kobayashi M.. Polymorphic structures and molecular vibrations of syndiotactic polystyrene[J]. Macromolecules, 1989,22(11):4377-4382. doi: 10.1021/ma00201a037

    22. [22]

      Chatani Y., Shimane Y., Inagaki T., Ijitsu T., Yukinari T. S. H.. Structural study on syndiotactic polystyrene:2[J]. crystal structure of molecular compound with toluene. Polymer, 1993,34(8):1620-1624.  

    23. [23]

      De Rosa C., Guerra G., Petraccone V.. Crystal structure of the emptied clathrate form (δe form) of syndiotactic polystyrene[J]. Macromolecules, 1997,30(14):4147-4152. doi: 10.1021/ma970061q

    24. [24]

      Reverchon E., Guerra G., Venditto V.. Regeneration of nanoporous crystalline syndiotactic polystyrene by supercritical CO2[J]. J. Appl. Polym. Sci., 1999,74(8):2077-2082. doi: 10.1002/(ISSN)1097-4628

    25. [25]

      Rani D. A., Yamamoto Y., Saito A., Sivakumar M., Tsujita Y., Yoshimizu H., Kinoshita T.. Structure and properties of the mesophase of syndiotacticpolystyrene. Ⅱ. Effect of stepwise extraction on the preparation of the mesophase[J]. J. Polym. Sci., Part B:Polym. Phys., 2003,41(3):269-273. doi: 10.1002/(ISSN)1099-0488

    26. [26]

      Ma W., Yu J., He J.. Empty δ crystal as an intermediate form for the δ to γ transition of syndiotactic polystyrene in supercritical carbon dioxide[J]. Macromolecules, 2005,38(11):4755-4760. doi: 10.1021/ma050488u

    27. [27]

      Vittoria V., de Candia F., Iannelli P., Immirzi A.. Solvent-induced crystallization of glassy syndiotactic polystyrene[J]. Makromol. Chem., Rapid Commun., 1988,9:765-769. doi: 10.1002/marc.1988.030091109

    28. [28]

      Gowd E. B., Tashiro K., Ramesh C.. Structural phase transitions of syndiotactic polystyrene[J]. Prog. Polym. Sci., 2009,34(3):280-315. doi: 10.1016/j.progpolymsci.2008.11.002

    29. [29]

      Ma W., Yu J., He J.. Direct formation of γ form crystal of syndiotactic polystyrene from amorphous state in supercritical CO2[J]. Macromolecules, 2004,37(18):6912-6917. doi: 10.1021/ma0491715

    30. [30]

      Ma W., Yu J., He J.. Stability of crystal forms of syndiotactic polystyrene correlated with their formation in different media having different solubility parameters[J]. Polymer, 2005,46(24):11104-11111. doi: 10.1016/j.polymer.2005.09.002

    31. [31]

      de Rudder J., Berghmans H., Arnauts J.. Phase behaviour and structure formation in the system syndiotactic polystyrene cyclohexanol[J]. Polymer, 1999,40(21):5919-5928. doi: 10.1016/S0032-3861(98)00819-2

    32. [32]

      Reiter G., Strobl G.. "Progress in understanding of polymer crystallization"[J]. Springer-Verlag, Berlin-Heidelberg, 2007p 481.  

    33. [33]

      Strobl G.. Colloquium:laws controlling crystallization and melting in bulk polymers[J]. Rev. Mod. Phys., 2009,81(3):1287-1300. doi: 10.1103/RevModPhys.81.1287

    34. [34]

      Al-Hussein M., Strobl G.. The mechanisms of recrystallization after melting in syndiotactic polypropylene and isotactic polystyrene[J]. Eur. Phys. J. E, 2001,6(4):305-314. doi: 10.1007/s10189-001-8045-5

    35. [35]

      Al-Hussein M., Strobl G.. The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene[J]. Macromolecules, 2002,35(5):1672-1676. doi: 10.1021/ma011345k

    36. [36]

      Al-Hussein M., Strobl G. J.. On the mechanisms of recrystallization after melting in semicrystalline polymers:the effect of the initial melt state[J]. J. Macromol. Sci. Part B Phys., 2003,B42(3-4):677-685.  

    37. [37]

      Lu Y., Wang Y., Jiang Z., Men Y.. Molecular weight dependency of surface free energy of native and stabilized crystallites in isotactic polypropylene[J]. ACS Macro Lett., 2014,3(11):1101-1105. doi: 10.1021/mz500599r

    38. [38]

      Iijima M., Strobl G.. Isothermal crystallization and melting of isotactic polypropylene analyzed by time and temperature-dependent small-angle X-ray scattering experiemnts[J]. Macromolecules, 2000,33(14):5204-5214. doi: 10.1021/ma000019m

    39. [39]

      Lu Y., Wang Y., Fu L., Jiang Z., Men Y.. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization[J]. J. Phys. Chem. B, 2014,118(45):13019-13023. doi: 10.1021/jp5093702

    40. [40]

      Hiss R., Hobeika S., Lynn C., Strobl G.. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study[J]. Macromolecules, 1999,32(13):4390-4403. doi: 10.1021/ma981776b

    41. [41]

      Fu Q., Heck B., Strobl G., Thomann Y.. A temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene):transition from chain-folded to chain-extended crystallization?[J]. Macromolecules, 2001,34(8):2502-2511. doi: 10.1021/ma0015875

    42. [42]

      Wang Y., Jiang Z., Fu L., Lu Y., Men Y.. Stretching temperature dependency of lamellar thickness in stress-induced localized melting and recrystallized polybutene-1[J]. Macromolecules, 2013,46(19):7874-7879. doi: 10.1021/ma401326g

    43. [43]

      Wang Y., Lu Y., Jiang Z., Men Y.. Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1[J]. Macromolecules, 2014,47(18):6401-6407. doi: 10.1021/ma501272a

    44. [44]

      Heck B., Hugel T., Iijima M., Sadiku E., Strobly G.. Steps in the transition of an entangled polymer melt to the partially crystalline state[J]. New J. Phys., 1999,117.1.  

    45. [45]

      Cho T. Y., Strobel G.. Temperature dependent variations in the lamellar structure of poly(L-lactide)[J]. Polymer, 2006,47(4):1036-1043. doi: 10.1016/j.polymer.2005.12.027

    46. [46]

      Liu, D.; Wang, R.; Wang, M.; Wu, C.; Wang, Z. Chem. Commun. 2015, 51, 4685-4688.  doi: 10.1039/C5CC00470E

    47. [47]

      Liu D., Yao C., Wang R., Wang M., Wang Z., Wu C., Lin F.. Angew[J]. Chem. Int. Ed., 2015,54(17):5205-5209. doi: 10.1002/anie.v54.17

    48. [48]

      Glatter, O.; Kratky, O. "Small-angle X-ray scattering", Academic Press, London, 1982, p. 119.

    49. [49]

      Strobl G. R., Schneider M.. Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene[J]. J. Polym. Sci., Part B:Polym. Phys., 1980,18(6):1343-1359. doi: 10.1002/pol.1980.180180614

    50. [50]

      Stribeck, N. "X-ray scattering of soft matter", Springer-Verlag, Berlin Heidelberg, 2007, p. 110.

    51. [51]

      Gowd E. B., Shibayama N., Tashiro K.. Structural changes during thermally induced phase transitions observed for uniaxially oriented δ form of syndiotactic polystyrene[J]. Macromolecues, 2007,40(17):6291-6295. doi: 10.1021/ma0703913

    52. [52]

      Gowd E. B., Tashiro K.. Effect of solvent molecules on phase transition phenomena of syndiotactic polystyrene[J]. Macromolecues, 2007,40(15):5366-5371. doi: 10.1021/ma070558s

    53. [53]

      Strobl G.. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites:a major route followed in polymer crystallization? Eur[J]. Phys. J. E, 2000,3(2):165-183.  

    54. [54]

      Strobl G.. Crystallization and melting of bulk polymers:new observations, conclusions and a thermodynamic scheme[J]. Prog. Polym. Sci., 2006,31(4):398-442. doi: 10.1016/j.progpolymsci.2006.01.001

    55. [55]

      Chen R., Lu Y., Jiang Z., Men Y.. Initial lamellar thickness dependency of recrystallization behavior of poly(4-methyl-1-pentene)[J]. J. Polym. Sci., Part B:Polym. Phys., 2018,56(3):219-224. doi: 10.1002/polb.24536

    56. [56]

      Su C. H., Jeng U., Chen S. H., Cheng C. Y., Lee J. J., Lai Y. H., Su W. C., Tsai J. C., Su A. C.. Thermodynamic characterization of polymorphs in bulk-crystallized syndiotactic polystyrene via small/wide-angle X-ray scattering and differential scanning calorimetry[J]. Macromolecules, 2009,42(12):4200-4207. doi: 10.1021/ma900384b

  • 加载中
    1. [1]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    2. [2]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    3. [3]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    4. [4]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    5. [5]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    6. [6]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    9. [9]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    10. [10]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    11. [11]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    12. [12]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    13. [13]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    14. [14]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    15. [15]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    16. [16]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    17. [17]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    18. [18]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    19. [19]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    20. [20]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return