Citation: Yuan-Yuan Pang, Sheng-Xiang Ji. Effect of Ink Molecular Weights and Annealing Conditions on Molecular Transfer Printing[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 697-702. doi: 10.1007/s10118-018-2056-4 shu

Effect of Ink Molecular Weights and Annealing Conditions on Molecular Transfer Printing

  • Corresponding author: Sheng-Xiang Ji, sji@ciac.ac.cn
  • Received Date: 15 September 2017
    Accepted Date: 7 October 2017
    Available Online: 30 January 2018

  • The molecular transfer printing (MTP) technique has been invented to fabricate chemical patterns with high fidelity using homopolymer inks. In this work, we systematically studied the effects of the molecular weights of homopolymer inks and transfer conditions on the MTP process. We explored a large range of molecular weights (~3.5-56 kg·mol-1) of hydroxyl-terminated polystyrene (PS-OH) and hydroxyl-terminated poly(methyl methacrylate) (PMMA-OH) in the MTP process, and found that the resulting chemical patterns on replicas from all five blends were functional and able to direct the assembly of films of the same blends. The transfer temperature and the film annealing sequences had an impact on the MTP process. MTP was sensitive to the transfer temperature and could only be performed within a certain temperature range, i.e. higher than the glass transition temperature (Tg) of copolymers and lower than the rearrangement temperature of the assembled domains. Pre-organization of the blend films was also necessary for MTP since the preferential wetting of PMMA domains at the replica surface might result in the formation of a PMMA wetting layer to prevent the presentation of underlying chemical patterns to the replica surface.
  • 加载中
    1. [1]

      Ji S., Wan L., Liu C. C., Nealey P. F.. Directed self-assembly of block copolymers on chemical patterns:a platform for nanofabrication[J]. Prog. Polym. Sci., 2016,54-55:76-127. doi: 10.1016/j.progpolymsci.2015.10.006

    2. [2]

      Li W., Mueller M.. Directed self-assembly of block copolymers by chemical or topographical guiding patterns:optimizing molecular architecture, thin-film properties, and kinetics[J]. Prog. Polym. Sci., 2016,54-55:47-75. doi: 10.1016/j.progpolymsci.2015.10.008

    3. [3]

      Delgadillo P. A. R., Gronheid R., Thode C. J., Wu H., Cao Y., Neisser M., Somervell M., Nafus K., Nealey P. F.. Implementation of a chemo-epitaxy flow for directed self-assembly on 300-mm wafer processing equipment[J]. J. Micro-nanolitho. Mems. Moems., 2012,11(3)031302. doi: 10.1117/1.JMM.11.3.031302

    4. [4]

      Mojarad N., Gobrecht J., Ekinci Y.. Interference lithography at euv and soft X-ray wavelengths:principles, methods, and applications[J]. Microelectron. Eng., 2015,143:55-63. doi: 10.1016/j.mee.2015.03.047

    5. [5]

      Ji S., Liu C. C., Liu G., Nealey P. F.. Molecular transfer printing using block copolymers[J]. ACS Nano, 2010,4(2):599-609. doi: 10.1021/nn901342j

    6. [6]

      Ji S., Liu C. C., Liao W., Fenske A. L., Craig G. S. W., Nealey P. F.. Domain orientation and grain coarsening in cylinder-forming poly(styrene-b-methyl methacrylate) films[J]. Macromolecules, 2011,44(11):4291-4300. doi: 10.1021/ma2005734

    7. [7]

      Ji S., Nagpal U., Liao W., Liu C. C., de Pablo J. J., Nealey P. F.. Three-dimensional directed assembly of block copolymers together with two-dimensional square and rectangular nanolithography[J]. Adv. Mater., 2011,23(32):3692-3697. doi: 10.1002/adma.v23.32

    8. [8]

      Jin X., Zhang X., Wan L., Nealey P. F., Ji S.. Fabrication of chemical patterns from graphoepitaxially assembled block copolymer films by molecular transfer printing[J]. Polymer, 2014,55(15):3278-3283. doi: 10.1016/j.polymer.2014.05.040

    9. [9]

      Liu G., Nealey P. F.. Improved block copolymer domain dispersity on chemical patterns via homopolymer-blending and molecular transfer printing[J]. Polymer, 2017,116:99-104. doi: 10.1016/j.polymer.2017.03.049

    10. [10]

      Onses M. S., Thode C. J., Liu C. C., Ji S., Cook P. L., Himpsel F. J., Nealey P. F.. Site-specific placement of au nanoparticles on chemical nanopatterns prepared by molecular transfer printing using block-copolymer films[J]. Adv. Funct. Mater., 2011,21(16):3074-3082. doi: 10.1002/adfm.201100300

    11. [11]

      Thode C. J., Cook P. L., Jiang Y., Serdar Onses M., Ji S., Himpsel F. J., Nealey P. F.. In situ metallization of patterned polymer brushes created by molecular transfer print and fill[J]. Nanotechnology, 2013,24(15)155602. doi: 10.1088/0957-4484/24/15/155602

    12. [12]

      Onses M. S.. Fabrication of nanopatterned poly(ethylene glycol) brushes by molecular transfer printing from poly(styreneblock-methyl methacrylate) films to generate arrays of Au nanoparticles[J]. Langmuir, 2015,31(3):1225-1230. doi: 10.1021/la504359f

    13. [13]

      Inoue T., Janes D. W., Ren J., Suh H. S., Chen X., Ellison C. J., Nealey P. F.. Molecular transfer printing of block copolymer patterns over large areas with conformal layers[J]. Adv. Mater. Interfaces, 2015,2(10)1500133. doi: 10.1002/admi.201500133

    14. [14]

      Solak H. H., David C., Gobrecht J., Golovkina V., Cerrina F., Kim S. O., Nealey P. F.. Sub-50 nm period patterns with EUV interference lithography[J]. Microelectron. Eng., 2003,67-68:56-62. doi: 10.1016/S0167-9317(03)00059-5

    15. [15]

      Wang J., Song J. H., Lu Y. Y., Ruan Y. J., An L. J.. Phase behavior and interfacial properties of diblock copolymer-homopolymer ternary mixtures:influence of volume fraction of copolymers and interaction energy[J]. Chinese J. Polym. Sci., 2017,35(7):874-886. doi: 10.1007/s10118-017-1915-8

    16. [16]

      Wei X. Y., Gu W. Y., Shen X. B., Strzalka J., Jiang Z., Russell T. P.. Deviations from bulk morphologies in thin films of block copolymer/additive binary blends[J]. Chinese J. Polym. Sci., 2013,31(9):1250-1259. doi: 10.1007/s10118-013-1320-x

    17. [17]

      Jin X. S., Pang Y. Y., Ji S. X.. From self-assembled monolayers to chemically patterned brushes:controlling the orientation of block copolymer domains in films by substrate modification[J]. Chinese J. Polym. Sci., 2016,34(6):659-678. doi: 10.1007/s10118-016-1800-x

    18. [18]

      Han E., In I., Park S. M., La Y. H., Wang Y., Nealey P. F., Gopalan P.. Photopatternable imaging layers for controlling block copolymer microdomain orientation[J]. Adv. Mater., 2007,19(24):4448-4452. doi: 10.1002/(ISSN)1521-4095

    19. [19]

      In I., La Y. H., Park S. M., Nealey P. F., Gopalan P.. Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films[J]. Langmuir, 2006,22(18):7855-7860. doi: 10.1021/la060748g

    20. [20]

      Ji S., Liao W., Nealey P. F.. Block cooligomers:a generalized approach to controlling the wetting behavior of block copolymer thin films[J]. Macromolecules, 2010,43(16):6919-6922. doi: 10.1021/ma1007946

    21. [21]

      Ji S., Liu C. C., Son J. G., Gotrik K., Craig G. S. W., Gopalan P., Himpsel F. J., Char K., Nealey P. F.. Generalization of the use of random copolymers to control the wetting behavior of block copolymer films[J]. Macromolecules, 2008,41(23):9098-9103. doi: 10.1021/ma801861h

    22. [22]

      Ji S., Liu G., Zheng F., Craig G. S. W., Himpsel F. J., Nealey P. F.. Preparation of neutral wetting brushes for block copolymer films from homopolymer blends[J]. Adv. Mater., 2008,20(16):3054-3060. doi: 10.1002/adma.v20:16

    23. [23]

      Mansky P., Liu Y., Huang E., Russell T. P., Hawker C. J.. Controlling polymer-surface interactions with random copolymer brushes[J]. Science, 1997,275(5305):1458-1460. doi: 10.1126/science.275.5305.1458

    24. [24]

      Pang Y., Wan L., Huang G., Zhang X., Jin X., Xu P., Liu Y., Han M., Wu G. P., Ji S.. Controlling block copolymersubstrate interactions by homopolymer brushes/mats[J]. Macromolecules, 2017,50(17):6733-6741. doi: 10.1021/acs.macromol.7b00743

    25. [25]

      Ryu D. Y., Shin K., Drockenmuller E., Hawker C. J., Russell T. P.. A generalized approach to the modification of solid surfaces[J]. Science, 2005,308(5719):236-239. doi: 10.1126/science.1106604

    26. [26]

      Liu G., Stoykovich M. P., Ji S., Stuen K. O., Craig G. S. W., Nealey P. F.. Phase behavior and dimensional scaling of symmetric block copolymer-homopolymer ternary blends in thin films[J]. Macromolecules, 2009,42(8):3063-3072. doi: 10.1021/ma802773h

    27. [27]

      Kim S. O., Solak H. H., Stoykovich M. P., Ferrier N. J., de Pablo J. J., Nealey P. F.. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates[J]. Nature, 2003,424(6947):411-414. doi: 10.1038/nature01775

    28. [28]

      Stoykovich M. P., Muller M., Kim S. O., Solak H. H., Edwards E. W., de Pablo J. J., Nealey P. F.. Directed assembly of block copolymer blends into nonregular device-oriented structures[J]. Science, 2005,308(5727):1442-1446. doi: 10.1126/science.1111041

    29. [29]

      Cheng J. Y., Rettner C. T., Sanders D. P., Kim H. C., Hinsberg W. D.. Dense self-assembly on sparse chemical patterns:rectifying and multiplying lithographic patterns using block copolymers[J]. Adv. Mater., 2008,20(16):3155-3158. doi: 10.1002/adma.v20:16

    30. [30]

      Ruiz R., Kang H., Detcheverry F. A., Dobisz E., Kercher D. S., Albrecht T. R., de Pablo J. J., Nealey P. F.. Density multiplication and improved lithography by directed block copolymer assembly[J]. Science, 2008,321(5891):936-939. doi: 10.1126/science.1157626

    31. [31]

      Liu G., Thomas C. S., Craig G. S. W., Nealey P. F.. Integration of density multiplication in the formation of device-oriented structures by directed assembly of block copolymer-homopolymer blends[J]. Adv. Funct. Mater., 2010,20(8):1251-1257. doi: 10.1002/adfm.v20:8

    32. [32]

      Liu C. C., Ramirez-Hernandez A., Han E., Craig G. S. W., Tada Y., Yoshida H., Kang H., Ji S., Gopalan P., de Pablo J. J., Nealey P. F.. Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features[J]. Macromolecules, 2013,46(4):1415-1424. doi: 10.1021/ma302464n

    33. [33]

      Stoykovich M., Edwards E., Solak H., Nealey P.. Phase behavior of symmetric ternary block copolymer-homopolymer blends in thin films and on chemically patterned surfaces[J]. Phys. Rev. Lett., 2006,97(14)147802. doi: 10.1103/PhysRevLett.97.147802

    34. [34]

      Edwards E. W., Montague M. F., Solak H. H., Hawker C. J., Nealey P. F.. Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates[J]. Adv. Mater., 2004,16(15):1315-1319. doi: 10.1002/(ISSN)1521-4095

    35. [35]

      Edwards E. W., Mueller M., Stoykovich M. P., Solak H. H., de Pablo J. J., Nealey P. F.. Dimensions and shapes of block copolymer domains assembled on lithographically defined chemically patterned substrates[J]. Macromolecules, 2007,40(1):90-96. doi: 10.1021/ma0607564

    36. [36]

      Green P. F., Kramer E. J.. Temperature dependence of tracer diffusion coefficients in polystyrene[J]. J. Mater. Res., 1986,1(1):202-204. doi: 10.1557/JMR.1986.0202

    37. [37]

      Welander A. M., Kang H., Stuen K. O., Solak H. H., Mueller M., de Pablo J. J., Nealey P. F.. Rapid directed assembly of block copolymer films at elevated temperatures[J]. Macromolecules, 2008,41(8):2759-2761. doi: 10.1021/ma800056s

  • 加载中
    1. [1]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    2. [2]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    3. [3]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    4. [4]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    13. [13]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    14. [14]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    15. [15]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    16. [16]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    17. [17]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    18. [18]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    19. [19]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    20. [20]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

Metrics
  • PDF Downloads(0)
  • Abstract views(644)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return