Citation: Yan-Ning Zeng, Qi-Feng Xing, Yan-Ping Ma, Wen-Hua Sun. Dinuclear Nickel(Ⅱ) Chlorides Bearing N, N'-bis(5, 6, 7-trihydroquinolin-8-ylidene)-[1, 1'-biphenyl]-4, 4'-diamines: Synthesis and Ethylene Polymerization[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 207-213. doi: 10.1007/s10118-018-2054-6 shu

Dinuclear Nickel(Ⅱ) Chlorides Bearing N, N'-bis(5, 6, 7-trihydroquinolin-8-ylidene)-[1, 1'-biphenyl]-4, 4'-diamines: Synthesis and Ethylene Polymerization

  • Received Date: 8 September 2017
    Accepted Date: 30 September 2017
    Available Online: 21 November 2017

  • 5, 6, 7-Trihydroquinolin-8-one was condensed with the corresponding benzidine to give N, N'-bis(5, 6, 7-trihydroquinolin-8-ylidene)-[1, 1'-biphenyl]-4, 4'-diamine derivatives (L1-L3). The ligands were reacted with two equivalents of NiCl2·6H2O in a mixture of EtOH and CH2Cl2 to afford the corresponding dinickel(Ⅱ) chloride complexes (Ni1-Ni3). The organic compounds were completely characterized, whilst the bi-metallic complexes were characterized by FTIR spectra and elemental analysis. These nickel complexes exhibited high activities towards ethylene polymerization in the presence of either MAO or Me2AlCl, maintaining a high activity over a prolonged period. The obtained polyethylenes were confirmed as having low molecular weights by GPC analysis.
  • 加载中
    1. [1]

      Johnson L. K., Killian C. M., Brookhart M.. New Pd(Ⅱ)-and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins[J]. J. Am. Chem. Soc., 1995,117(23):6414-6415. doi: 10.1021/ja00128a054

    2. [2]

      Killian C. M., Tempel D. J., Johnson L. K., Brookhart M.. Living polymerization of α-olefins using Ni(Ⅱ)-α-diimine catalysts. synthesis of new block polymers based on α-olefins[J]. J. Am. Chem. Soc., 1996,118(46):11664-11665.  

    3. [3]

      Guan Z. B., Cotts P. M., McCord E. F., Mclain S. J.. Chain walking:a new strategy to control polymer topology[J]. Science, 1999,283(5410):2059-2061. doi: 10.1126/science.283.5410.2059

    4. [4]

      Rose J. M., Cherian A. E., Coates G. W.. Living polymerization of α-olefins with an α-diimine Ni(Ⅱ) catalyst:formation of well-defined ethylene-propylene copolymers through controlled chain-walking[J]. J. Am. Chem. Soc., 2006,128(13):4186-4187. doi: 10.1021/ja058183i

    5. [5]

      Wang J., Ye Z., Joly H.. Synthesis and characterization of hyperbranched polyethylenes tethered with polyhedral oligomeric silsesquioxane (POSS) nanoparticles by chain walking ethylene copolymerization with acryloisobutyl-POSS[J]. Macromolecules, 2007,40(17):6150-6163. doi: 10.1021/ma0706733

    6. [6]

      Popeney C., Guan Z. B.. Ligand electronic effects on late transition metal polymerization catalysts[J]. Organometallics, 2005,24(6):1145-1155. doi: 10.1021/om048988j

    7. [7]

      Leung D. H., Ziller J. W., Guan Z. B.. Axial donating ligands:a new strategy for late transition metal olefin polymerization catalysis[J]. J. Am. Chem. Soc., 2008,130(24):7538-7530. doi: 10.1021/ja8017847

    8. [8]

      Popeney C., Guan Z. B.. A mechanistic investigation on copolymerization of ethylene with polar monomers using a cyclophane-based Pd(Ⅱ) α-diimine catalyst[J]. J. Am. Chem. Soc., 2009,131(34):12384-12393. doi: 10.1021/ja904471v

    9. [9]

      Sun W. H., Zhang S., Jie S. Y., Zhang M., Li H., Chen J., Wedeking K., Fröhlich R.. Synthesis, characterization and ethylene oligomerization studies of nickel complexes bearing 2-imino-1, 10-phenanthrolines[J]. J. Organomet. Chem., 2006,691(20):4196-4203. doi: 10.1016/j.jorganchem.2006.06.028

    10. [10]

      Sun W. H., Wang K., Wedeking K., Zhang D., Zhang S.. Synthesis, characterization, and ethylene oligomerization of nickel complexes bearing N-((pyridin-2-yl)methylene)quinolin-8-amine derivatives[J]. Organometallics, 2007,26(19):4781-4790. doi: 10.1021/om700440v

    11. [11]

      Zhang S., Sun W. H., Kuang X., Vystorop I., Yi J., Cai J., Li Y. J.. Unsymmetric bimetal(Ⅱ) complexes:synthesis, structures and catalytic behaviors toward ethylene[J]. J. Organomet. Chem., 2007,692(23):5307-5316. doi: 10.1016/j.jorganchem.2007.08.020

    12. [12]

      Huang F., Sun Z., Du S., Yue E., Ba J., Hu X., Liang T., Galland G. B., Sun W.-H.. Ring-tension adjusted ethylene polymerization by aryliminocycloheptapyridyl nickel complexes[J]. Dalton Trans., 2015,44(32):14281-14292. doi: 10.1039/C5DT01831E

    13. [13]

      Huang C., Zhang Y., Liang T., Zhao Z., Hu X., Sun W.-H.. Rigid geometry 8-arylimino-7, 7-dimethyl-5, 6-dihydroquinolyl nickel bromides:single-site active species towards ethylene polymerization[J]. New J. Chem., 2016,40(11):9329-9336. doi: 10.1039/C6NJ02464E

    14. [14]

      Gao R., Sun W. H., Redshaw C.. Nickel complex pre-catalysts in ethylene polymerization:new approaches to elastomeric materials[J]. Catal. Sci. Technol., 2013,3(5):1172-1179. doi: 10.1039/c3cy20691b

    15. [15]

      Jia D., Zhang W., Liu W., Wang L., Redshaw C., Sun W. H.. Unsymmetrical α-diiminonickel bromide complexes:synthesis, characterization and their catalytic behavior toward ethylene, Catal[J]. Sci. Technol., 2013,3:2737-2745.  

    16. [16]

      Yu J., Zeng Y., Huang W., Hao X., Sun W.H.. N-(5, 6, 7-Trihydroquinolin-8-ylidene)arylaminonickel dichlorides as highly active single-site pro-catalysts in ethylene polymerization[J]. Dalton Trans., 2011,40(33):8436-8443. doi: 10.1039/c1dt10541h

    17. [17]

      Zhang L., Hao X., Sun. W. H., Redshaw C.. Synthesis, characterization, and ethylene polymerization behavior of 8-(nitroarylamino)-5, 6, 7-trihydroquinolylnickel dichlorides:influence of the nitro group andimpurities on catalytic activity[J]. ACS Catal., 2011,1(10):1213-1220. doi: 10.1021/cs200308b

    18. [18]

      Yu J., Hu X., Zeng Y., Zhang L., Ni C., Hao X., Sun W.H.. Synthesis, characterisation and ethylene oligomerization behaviour of N-(2-substituted-5, 6, 7-trihydroquinolin-8-ylidene) arylaminonickel dichlorides[J]. New J. Chem., 2011,35(1):178-183. doi: 10.1039/C0NJ00516A

    19. [19]

      Sun Z., Yue E., Qu M., Oleynik I. V., Oleynik I. I., Li K., Liang T., Zhang W., Sun W. H.. 8-(2-Cycloalkylphenylimino)-5, 6, 7-trihydroquinolylnickel halides:polymerizing ethylene to highly branched and lower molecular weight polyethylenes[J]. Inorg. Chem. Front., 2015,2:223-227. doi: 10.1039/C4QI00162A

    20. [20]

      Sun Z., Huang F., Qu M., Yue E., Oleynik I. V., Oleynik I. I., Zeng Y., Liang T., Li K., Zhang W., Sun W. H.. 8-(2-Cycloalkylphenylimino)-5, 6, 7-trihydroquinolylnickel halides:polymerizing ethylene to highly branched and lower molecular weight polyethylenes[J]. RSC Adv., 2015,5(95):77913-77921. doi: 10.1039/C5RA15806K

    21. [21]

      Huang C., Zeng Y., Flisak Z., Liang T., Sun W. H.. Tailoring polymers through interplay of ligands within precatalyst:8-(nitro/benzhydryl-arylimino)-7, 7-dimethyl-5, 6-dihydroquinol ynickel halides in ethylene polymerization[J]. J. Polym. Sci., Part A:Polym. Chem., 2017,55(12):2071-2083. doi: 10.1002/pola.v55.12

    22. [22]

      Wang Z., Zhang Y., Ma Y., Hu X., Solan G. A., Sun Y., Sun W. H.. Molecular weight control of polyethylene waxes using a constrained imino-cyclopenta[J]. J. Polym. Sci., Part A:Polym. Chem., 2017,55(20):3494-3505.  

    23. [23]

      Wang S., Sun W. H., Redshaw C.. Recent progress on nickel-based systems for ethylene oligo-/polymerization catalysis[J]. J. Organomet. Chem., 2014,751:717-741. doi: 10.1016/j.jorganchem.2013.08.021

    24. [24]

      Wang Z., Liu Q., Solan G. A., Sun W. H.. Recent advances in Ni-mediated ethylene chain growth:Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure[J]. Coord. Chem. Rev., 2017,350:68-83. doi: 10.1016/j.ccr.2017.06.003

    25. [25]

      Guo N., Stern C. L., Marks T. J.. Recent progress on nickel-based systems for ethylene oligo-/polymerization catalysis[J]. J. Am. Chem. Soc., 2008,130(7):2246-2261. doi: 10.1021/ja076407m

    26. [26]

      Gahan L. R., Smith S. J., Neves A., Schenk G.. Phosphate ester hydrolysis:metal complexes as purple acid phosphatase and phosphotriesterase analogues[J]. Eur. J. Inorg. Chem., 2009(19):2745-2758.  

    27. [27]

      Gavrilova A. L., Bosnich B.. Principles of mononucleating and binucleating ligand design[J]. Chem. Rev., 2004,104(2):349-383. doi: 10.1021/cr020604g

    28. [28]

      Bahuleyan B. K., Kim J. H., Seo H. S., Oh J. M., Ahn I. Y., Ha C. S., Park D. W., Kim I.. Polymerization of methyl methacrylate with Nickel(Ⅱ) and Palladium(Ⅱ) iminopyridyl mononuclear bimetallic complexes[J]. Catal. Lett., 2008,126(3-4):371-377. doi: 10.1007/s10562-008-9635-x

    29. [29]

      Guo Y., Ai P., Han L., Chen L., Li B. G., Jie S.. Mono-and di-nuclear nickel(Ⅱ) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes:synthesis, structures and vinyl polymerization of norbornene[J]. J. Organomet. Chem., 2012,716:222-229. doi: 10.1016/j.jorganchem.2012.06.024

    30. [30]

      Mi P. K., Xu S., Qu L. D., Zhang D. S., Chen Q. A., Wang S. H.. Synthesis of double silylene-bridged binuclear metallocenes and their cooperation effect during ethylene polymerization and ethylene/1-hexene copolymerization[J]. J. Appl. Polym. Sci., 2011,121(1):21-26. doi: 10.1002/app.v121.1

    31. [31]

      Gurubasayaraj P. M., Nomura K.. Hetero-bimetallic complexes of titanatranes with aluminum alkyls:synthesis, structural analysis, and their use in catalysis for ethylene polymerization[J]. Organometallics, 2010,29(16):3500-3506. doi: 10.1021/om100119g

    32. [32]

      Salata M. R., Marks T.J.. Catalyst nuclearity effects in olefin polymerization. enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts[J]. Macromolecules, 2009,42(6):1920-1933. doi: 10.1021/ma8020745

    33. [33]

      Rodriguez B. A., Delferro M., Marks T.J.. Bimetallic effects for enhanced polar comonomer enchainment selectivity in catalytic ethylene polymerization[J]. J. Am. Chem. Soc., 2009,131(16):5902-5919. doi: 10.1021/ja900257k

    34. [34]

      Wang L. C., Sun J. Q.. Methylene bridged binuclear bis(imino)pyridyl iron(Ⅱ) complexes and their use as catalysts together with Al(i-Bu)3 for ethylene polymerization[J]. Inorg. Chim. Acta, 2008,361(7):1843-1849. doi: 10.1016/j.ica.2007.09.039

    35. [35]

      Pelletier J. D. A., Fawcett J., Singh K., Solan G. A.. From symmetrical to unsymmetrical bimetallic nickel complexes bearing aryl-linked iminopyridines; synthesis, structures and ethylene polymerization studies[J]. J. Organomet. Chem., 2008,693(16):2723-2731. doi: 10.1016/j.jorganchem.2008.05.020

    36. [36]

      Armitage A. P., Champouret Y. D. M., Grigoli H., Pelletier J. D. A., Singh K., Solan G. A.. Probing the effect of binding site and metal centre variation in pentadentate oligopyridyliminebearing bimetallic (Fe(Ⅱ), Co(Ⅱ), Ni(Ⅱ)) ethylene oligomerisation catalysts[J]. Eur. J. Inorg. Chem., 2008(29):4597-4607.  

    37. [37]

      Zhang S., Vystorop I., Tang Z. H., Sun W. H.. Bimetallic (Iron or Cobalt) complexes bearing 2-methyl-2, 4-bis(6-iminopyridin-2-yl)-1H-1, 5-benzodiazepines for ethylene reactivity[J]. Organometallics, 2007,26(9):2456-2460. doi: 10.1021/om070062z

    38. [38]

      Jie S. Y., Zhang D. H., Zhang T. Z., Sun W. H., Chen J. T., Ren Q., Liu D. B., Zheng G., Chen W.. Bridged bis-pyridinylimino dinickel(Ⅱ) complexes:Syntheses, characterization, ethylene oligomerization and polymerization[J]. J. Organomet. Chem., 2005,690(7):1739-1749. doi: 10.1016/j.jorganchem.2005.01.029

    39. [39]

      Sun W. H., Xing Q., Yu J., Novikova E., Zhao W., Tang X., Liang T., Redshaw C.. Probing the characteristics of mono-or bimetallic (iron or cobalt) complexes bearing 2, 4-bis(6-iminopyridin-2-yl)-3H-benzazepines:synthesis, characterization, and ethylene reactivity[J]. Organometallics, 2013,32(8):2309-2318. doi: 10.1021/om301086p

    40. [40]

      Kong S., Song K., Liang T., Guo C., Sun. W. H., Redshaw C.. Methylene-bridged bimetallic α-diimino nickel(Ⅱ) complexes:synthesis and high efficiency in ethylene polymerization[J]. Dalton Trans., 2013,42(25):9176-9187. doi: 10.1039/c3dt00023k

    41. [41]

      Xing Q., Song K., Liang T., Liu Q., Sun W. H., Redshaw C.. Synthesis, characterization and ethylene polymerization behaviour of binuclear nickel halides bearing 4, 5, 9, 10-tetra(arylimino)-pyrenylidenes[J]. Dalton Trans., 2014,43(12):7830-7837.  

    42. [42]

      Cui Y., Zhang S., Sun W. H.. Synthesis, Characterization and catalytic behavior of dimeric Co(Ⅱ) and Ni(Ⅱ) complexes containing N, N'-(phenyl-2-pyridinymethylene)-3, 3', 5, 5'-tetramethylbenzidine[J]. Chinese J. Polym. Sci., 2008,26(5):539-545. doi: 10.1142/S0256767908003242

    43. [43]

      Xing Q., Zhao T., Qiao Y., Wang L., Redshaw C., Sun W. H.. Synthesis, characterization and ethylene polymerization behavior of binuclear iron complexes bearing N, N'-bis(1-(6-(1-(arylimino)ethyl) pyridin-2-yl)-ethylidene) benzidines[J]. RSC Adv., 2013,3(48):26184-26193. doi: 10.1039/c3ra42631a

    44. [44]

      Xing Q., Zhao T., Du S., Yang W., Liang T., Redshaw C., Sun W. H.. Biphenyl-bridged 6-(1-aryliminoethyl)-2-iminopyridylcobalt complexes:synthesis, characterization, and ethylene polymerization behavior[J]. Organometallics, 2014,33(6):1382-1388. doi: 10.1021/om4010884

    45. [45]

      Yue E., Zhang L., Xing Q., Cao X. P., Hao X., Redshaw C., Sun W. H.. 2-(1-(2-Benzhydrylnaphthylimino)ethyl)-pyridylnickel halides:synthesis, characterization, and ethylene polymerization behavior[J]. Dalton Trans., 2014,43(2):423-431. doi: 10.1039/C3DT52234B

    46. [46]

      Yue E., Xing Q., Zhang L., Shi Q., Cao X. P., Wang L., Redshaw C., Sun W. H.. Synthesis and characterization of 2-(2-benzhydrylnaphthyliminomethyl)pyridylnickel halides:formation of branched polyethylene[J]. Dalton Trans., 2014,43(8):3339-3346. doi: 10.1039/C3DT53205D

    47. [47]

      Britovsek G. J. P., Bruce M., Gibson V. C., Kimberley B. S., Maddox S. M., McTavish S. J., Redshaw C., Solan G. A., Strolmberg S., White A. G. P., Williams D. J.. Iron and cobalt ethylene polymerization catalysts bearing 2, 6-bis(imino)pyridyl ligands:synthesis, structures, and polymerization studies[J]. J. Am. Chem. Soc., 1999,121(38):8728-8740. doi: 10.1021/ja990449w

    48. [48]

      Britovsek G. J. P., Cohen S. A., Gibson V. C., Meurs M. V.. Iron catalyzed polyethylene chain growth on zinc:a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems[J]. J. Am. Chem. Soc., 2004,126(34):10701-10712. doi: 10.1021/ja0485560

    49. [49]

      Meurs M. V., Britovsek G. J. P., Gibson V. C., Cohen S. A.. Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts:a comparative investigation of highly active catalyst systems across the transition series[J]. J. Am. Chem. Soc., 2005,127(27):9913-9923. doi: 10.1021/ja050100a

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    5. [5]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    6. [6]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    7. [7]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    8. [8]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    9. [9]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    10. [10]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    11. [11]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    12. [12]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    13. [13]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    14. [14]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    15. [15]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    16. [16]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    17. [17]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    18. [18]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return