Citation: Fei Liu, De-Quan Chi, Hai-Ning Na, Jin Zhu. Isothermal Crystallization Kinetics and Crystalline Morphologies of Poly(butylene adipate-co-butylene 1, 4-cyclohexanedicarboxylate) Copolymers[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 756-764. doi: 10.1007/s10118-018-2051-9 shu

Isothermal Crystallization Kinetics and Crystalline Morphologies of Poly(butylene adipate-co-butylene 1, 4-cyclohexanedicarboxylate) Copolymers

  • Corresponding author: Hai-Ning Na, nahaining@nimte.ac.cn
  • Received Date: 1 September 2017
    Accepted Date: 25 September 2017
    Available Online: 8 February 2018

  • In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1, 4-cyclohexanedicarboxylate) (PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1, 4-cyclohexanedicarboxylate) (PBC). The results indicate that the introduction of butylene adipate (BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.
  • 加载中
    1. [1]

      Tserki V., Matzinos P., Pavlidou E., Vachliotis D., Panayiotou C.. Biodegradable aliphatic polyesters. part Ⅰ. properties and biodegradation of poly(butylene succinate-co-butylene adipate)[J]. Polym. Degrad. Stab., 2006,91:367-376. doi: 10.1016/j.polymdegradstab.2005.04.035

    2. [2]

      Gan Z., Kuwabara K., Abe H., Iwata T., Doi Y.. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate)[J]. Biomacromolecules, 2004,5:371-378. doi: 10.1021/bm0343850

    3. [3]

      Xu J., Guo B. H.. Poly(butylene succinate) and its copolymers:research, development and industrialization[J]. Biotechnol. J., 2010,5(11):1149-1163. doi: 10.1002/biot.v5.11

    4. [4]

      Gan Z., Abe H., Kurokawa H., Doi Y.. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters[J]. Biomacromolecules, 2001,2(2):605-613. doi: 10.1021/bm015535e

    5. [5]

      Kint D., Munoz-Guerra S.. A review on the potential biodegradability of poly(ethylene terephthalate)[J]. Polym. Int., 1999,48(5):346-352. doi: 10.1002/(SICI)1097-0126(199905)48:5<346::AID-PI156>3.0.CO;2-N

    6. [6]

      Stein R. S., Misra A.. Morphological studies on polybutylene terephthalate[J]. J. Polym. Sci. Polym. Phys. Ed., 1980,18(2):327-342. doi: 10.1002/pol.1980.180180215

    7. [7]

      Herrera R., Franco L., Rodríguez-Galán A., Puiggalí J.. Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s[J]. J. Polym. Sci., Part A:Polym. Chem., 2002,40(23):4141-4157. doi: 10.1002/pola.v40:23

    8. [8]

      Yokouchi M., Sakakibara Y., Chatani Y., Tadokoro H., Tanaka T.. Structures of two crystalline forms of poly(buty1ene terephthalate) and reversible transition between them by mechanical deformation[J]. Macromolecules, 1975,9:266-273.  

    9. [9]

      Kai W., Zhu B., He Y., Inoue Y.. Crystallization of poly(butylene adipate) in the presence of nucleating agents[J]. J. Polym. Sci., Part B:Polym. Phys., 2005,43(17):2340-2351. doi: 10.1002/(ISSN)1099-0488

    10. [10]

      Yang J., Pan P., Dong T., Inoue Y.. Crystallization kinetics and crystalline structure of biodegradable poly(ethylene adipate)[J]. Polymer, 2010,51(3):807-815. doi: 10.1016/j.polymer.2009.11.065

    11. [11]

      Vasanthan N., Ozkaya S., Yaman M.. Morphological and conformational changes of poly(trimethylene terephthalate) during isothermal melt crystallization[J]. J. Phys. Chem. B, 2010,114:13069-13075.  

    12. [12]

      Yang J., Pan P., Hua L., Xie Y., Dong T., Zhu B., Inoue Y., Feng X.. Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly(butylene adipate) in its miscible blend with poly(butylene succinate)[J]. Polymer, 2011,52(15):3460-3468. doi: 10.1016/j.polymer.2011.05.041

    13. [13]

      Chen Y. A., Wu T. M.. Crystallization kinetics of poly(1, 4-butylene adipate) with stereocomplexed poly(lactic acid) serving as a nucleation agent[J]. Ind. Eng. Chem. Res., 2014,53:16689-16695. doi: 10.1021/ie503303u

    14. [14]

      Milani A., Galimberti D.. Polymorphism of poly(butylene terephthalate) investigated by means of periodic density functional theory calculations[J]. Macromolecules, 2014,47(3):1046-1052. doi: 10.1021/ma402602f

    15. [15]

      Androsch R., Rhoades A. M., Stolte I., Schick C.. Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate)[J]. Eur. Polym. J., 2015,66:180-189. doi: 10.1016/j.eurpolymj.2015.02.013

    16. [16]

      Cui Z., Qiu Z.. Thermal properties and crystallization kinetics of poly(butylene suberate)[J]. Polymer, 2015,67:12-19. doi: 10.1016/j.polymer.2015.04.069

    17. [17]

      Park S. S., Chae S. H., Im S. S.. Transesterification and crystallization behavior of poly(butylene succinate)/poly(butylene terephthalate) block copolymers[J]. J. Polym. Sci., Part A:Polym. Chem., 1998,36(1):147-156. doi: 10.1002/(ISSN)1099-0518

    18. [18]

      Nikolic M. S., Djonlagic J.. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s[J]. Polym. Degrad. Stab., 2001,74:263-270. doi: 10.1016/S0141-3910(01)00156-2

    19. [19]

      Kuwabara K., Gan Z., Nakamura T., Abe H., Doi Y.. Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipate-co-butylene terephthalate) and related polyesters[J]. Biomacromolecules, 2002,3(2):390-396. doi: 10.1021/bm0156476

    20. [20]

      Cranston E., Kawada J., Raymond S., Morin F. G., Marchessault R. H.. Cocrystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate)[J]. Biomacromolecules, 2003,4:995-999. doi: 10.1021/bm034089n

    21. [21]

      Gan Z., Kuwabara K., Yamamoto M., Abe H., Doi Y.. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters[J]. Polym. Degrad. Stab., 2004,83:289-300. doi: 10.1016/S0141-3910(03)00274-X

    22. [22]

      Ren M., Song J., Song C., Zhang H., Sun X., Chen Q., Zhang H., Mo Z.. Crystallization kinetics and morphology of poly(butylene succinate-co-adipate)[J]. J. Polym. Sci., Part B:Polym. Phys., 2005,43(22):3231-3241. doi: 10.1002/(ISSN)1099-0488

    23. [23]

      Shi X. Q., Ito H., Kikutani T.. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers[J]. Polymer, 2005,46:11442-11450. doi: 10.1016/j.polymer.2005.10.065

    24. [24]

      Qiu Z., Yan C., Lu J., Yang W., Ikehara T., Nishi T.. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride)[J]. J. Phys. Chem. B, 2007,111(11):2783-2789. doi: 10.1021/jp067606f

    25. [25]

      Hwang S. Y., Jin X. Y., Yoo E. S., Im S. S.. Synthesis, physical properties and enzymatic degradation of poly(oxyethylene-b-butylene succinate) ionomers[J]. Polymer, 2011,52(13):2784-2791. doi: 10.1016/j.polymer.2011.04.065

    26. [26]

      Ojijo V., Sinha Ray S., Sadiku R.. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-coadipate][J]. ACS Appl. Mater. Interfaces, 2012,4(12):6690-6701. doi: 10.1021/am301842e

    27. [27]

      Wang X., Shi J., Chen Y., Fu Z., Shi Y.. Nonisothermal crystallization kinetics of poly(butylene adipate-co-terephthalate) Copolyester[J]. China Pet. Process. Petrochemical Technol., 2012,14(1):74-79.  

    28. [28]

      Dil E. J., Carreau P. J., Favis B.D.. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends[J]. Polymer, 2015,68:202-212. doi: 10.1016/j.polymer.2015.05.012

    29. [29]

      Liu F., Zhang J., Wang J., Liu X., Zhang R., Hu G., Na H., Zhu J.. Soft segment free thermoplastic polyester elastomers with high performance[J]. J. Mater. Chem. A, 2015,3:13637-13641. doi: 10.1039/C5TA03325J

    30. [30]

      Brunelle D. J., Jang T.. Optimization of poly(1, 4-cyclohexylidene cyclohexane-1, 4-dicarboxylate) (PCCD) preparation for increased crystallinity[J]. Polymer, 2006,47(11):4094-4104. doi: 10.1016/j.polymer.2006.02.070

    31. [31]

      Berti C., Celli A., Marchese P., Marianucci E., Barbiroli G., Di Credico F.. Influence of molecular structure and stereochemistry of the 1, 4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1, 4-cyclohexanedicarboxylate)[J]. Macromol. Chem. Phys., 2008,209(13):1333-1344. doi: 10.1002/macp.v209:13

    32. [32]

      Gigli M., Lotti N., Vercellino M., Visai L., Munari A.. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1, 4-cyclohexanedicarboxylate) as promising candidates for biomedical applications[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2014,34:86-97. doi: 10.1016/j.msec.2013.08.013

    33. [33]

      Gigli M., Lotti N., Gazzano M., Siracusa V., Finelli L., Munari A., Dalla Rosa M.. Fully aliphatic copolyesters based on poly(butylene 1, 4-cyclohexanedicarboxylate) with promising mechanical and barrier properties for food packaging applications[J]. Ind. Eng. Chem. Res., 2013,52(36):12876-12886. doi: 10.1021/ie401781d

    34. [34]

      Commereuc S., Askanian H., Verney V., Celli A., Marchese P., Berti C.. About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering:structure/degradability relationships[J]. Polym. Degrad. Stab., 2013,98(7):1321-1328. doi: 10.1016/j.polymdegradstab.2013.03.030

    35. [35]

      Berti C., Binassi E., Celli A., Colonna M., Fiorini M., Marchese P., Marianucci E., Gazzano M., Credico F. D. I., Brunelle D.J.. Poly(1, 4-cyclohexylenedimethylene 1, 4-cyclohexanedicarboxylate):influence of stereochemistry of 1, 4-cyclohexylene units on the thermal properties[J]. J. Polym. Sci., Part B:Polym. Phys, 2008,46:619-630. doi: 10.1002/(ISSN)1099-0488

    36. [36]

      Chen L. P., Yee A. F., Goetz J. M., Schaefer J.. Molecular structure effects on the secondary relaxation and impact strength of a series of polyester copolymer glasses[J]. Macromolecules, 1998,31(16):5371-5382. doi: 10.1021/ma971671t

    37. [37]

      Gong Y., Hu C. W., Li H., Huang K. L., Tang W.. Isomer transformation and photoluminescence in novel coordination polymers constructed from 1, 4-cyclohexanedicarboxylic acid and imidazole[J]. J. Solid State Chem., 2005,178(10):3152-3158. doi: 10.1016/j.jssc.2005.07.023

    38. [38]

      Liu F., Qiu J., Wang J., Zhang J., Na H., Zhu J.. Role of cis-1, 4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1, 4-cyclohexanedicarboxylate) copolymer[J]. RSC Adv, 2016,6(70):65889-65897. doi: 10.1039/C6RA13495E

    39. [39]

      Qiu J., Liu F., Zhang J., Na H., Zhu J.. Non-planar ring contained polyester modifying polylactide to pursue high toughness[J]. Compos. Sci. Technol., 2016,128:41-48. doi: 10.1016/j.compscitech.2016.03.014

    40. [40]

      Celli A., Marchese P., Sullalti S., Berti C., Barbiroli G.. Eco-friendly poly(butylene 1, 4-cyclohexanedicarboxylate):relationships between stereochemistry and crystallization behavior[J]. Macromol. Chem. Phys., 2011,212(14):1524-1534. doi: 10.1002/macp.v212.14

  • 加载中
    1. [1]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    4. [4]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    7. [7]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    8. [8]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    11. [11]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    12. [12]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    13. [13]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    16. [16]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    17. [17]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    18. [18]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    19. [19]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    20. [20]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

Metrics
  • PDF Downloads(0)
  • Abstract views(710)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return