Citation: Wei Zhao, Chuan-Yang Li, Chun-Ji Wu, Xin-Li Liu, Ze-Huai Mou, Chang-Guang Yao, Dong-Mei Cui. Synthesis of Ultraviolet Absorption Polylactide via Immortal Polymerization of rac-Lactide Initiated by a Salan-yttrium Catalyst[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 202-206. doi: 10.1007/s10118-018-2050-x shu

Synthesis of Ultraviolet Absorption Polylactide via Immortal Polymerization of rac-Lactide Initiated by a Salan-yttrium Catalyst

  • Corresponding author: Dong-Mei Cui, dmcui@ciac.ac.cn
  • These authors contributed equally to this work.
    Invited paper for special issue of "Metal-Catalyzed Polymerization"
  • Received Date: 6 September 2017
    Accepted Date: 22 September 2017
    Available Online: 27 November 2017

  • A highly efficient strategy for the synthesis of polylactide with the UV absorption ability was established by employing a Salan-yttrium complex (acting as a fast runing catalyst) combined with large excess hydroxyl functionalized benzophenone, BP'-OH. During polymerization, BP'-OH, acting as the chain transfer agent, attached to the active rare-earth metal catalyst via a rapid-reversible exchange reaction to initiate the polymerization. Thus, more polyester chains appeared to grow from one active metal species, and the UV absorption fragments were incorporated into the polymer chains at specific sites, in situ. A high productivity up to 1000 molLA/mol(Salan-Y) was successfully achieved and 100 BP'-labeled PLA chains grew from each active metal center.
  • 加载中
    1. [1]

      Drumright R. E., Gruber P. R., Henton D. E.. Polylactic acid technology[J]. Adv. Mater., 2000,12:1841-1846. doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Mecking S.. Nature or Petrochemistry? Biologically degradable materials[J]. Angew. Chem. Int. Ed., 2004,43:1078-1085. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Dattaa R., Tsaia S. P., Bonsignorea P., Moona S. H., Frank J. R.. Technological and economic potential of poly(lactic acid) and lactic acid derivatives[J]. FEMS Microbiol. Rev., 1995,16:221-231. doi: 10.1111/fmr.1995.16.issue-2-3

    4. [4]

      Auras R., Harte B., Selke S.. An overview of polylactides as packaging materials[J]. Macromol. Biosci., 2004,4:835-864. doi: 10.1002/(ISSN)1616-5195

    5. [5]

      Nelson K. H., Cathcart W. M.. Transmission of light through pigmented polyethylene milk bottles[J]. J. Food Prot., 1984,47:346-348. doi: 10.4315/0362-028X-47.5.346

    6. [6]

      Erickson M. C.. Chemical and microbial stability of fluid milk in response to packaging and dispensing[J]. Int. J. Dairy Technol., 1997,50:107-111. doi: 10.1111/idt.1997.50.issue-3

    7. [7]

      Bradley R. L.. Effect of light on alteration of nutritional value and flavor of milk:a review[J]. J. Food Prot., 1980,43:314-320. doi: 10.4315/0362-028X-43.4.314

    8. [8]

      Xiao P., Shi S. Q., Nie J.. Synthesis and characterization of copolymerizable one-component type Ⅱ photoinitiator[J]. Polym. Adv. Technol.,, 2008,19:1305-1310. doi: 10.1002/pat.v19:9

    9. [9]

      Wu Q. H., Qu B. J.. Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene[J]. Polym. Eng. Sci., 2001,41:1220-1226. doi: 10.1002/(ISSN)1548-2634

    10. [10]

      Xiao P., Wang Y., Dai M., Shi S., Wu G., Nie J.. Synthesis and photopolymerization kinetics of polymeric one-component type Ⅱ photoinitiator containing benzophenone moiety and tertiary amine[J]. Polym. Eng. Sci., 2008,48:884-888. doi: 10.1002/(ISSN)1548-2634

    11. [11]

      Han J. Y., Jiang S. L., Gao Y. J., Sun F.. Intramolecularinitiating photopolymerization behavior of nanogels with the capability of reducing shrinkage[J]. J. Mater. Chem. C, 2016,4:10675-10683. doi: 10.1039/C6TC03839E

    12. [12]

      Gritsenko K. P., Krasovsky A. M.. Thin-film deposition of polymers by vacuum degradation[J]. Chem. Rev., 2003,103:3607-3650. doi: 10.1021/cr010449q

    13. [13]

      Zhao W., Li C. Y., Liu B., Wang X., Li P., Wang Y., Wu C. J., Yao C. G., Liu X. L., Cui D. M.. A new strategy to access polymers with aggregation-induced emission characteristics[J]. Macromolecules, 2014,47:5586-5594. doi: 10.1021/ma500985j

    14. [14]

      Liu X. L., Shang X. M., Tang T., Hu N. H., Pei F. K., Cui D. M., Chen X. S., Jing X. B.. Achiral lanthanide alkyl complexes bearing N, O multidentate ligands. synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide[J]. Organometallics, 2007,26:2747-2757. doi: 10.1021/om0700359

    15. [15]

      Wang Y., Zhao W., Liu X. L., Cui D. M., Chen E. Y. X.. Ligand-free magnesium catalyst system:immortal polymerization of L-lactide with high catalyst efficiency and structure of active intermediates[J]. Macromolecules, 2012,45:6957-6965. doi: 10.1021/ma3007625

    16. [16]

      Zhao W., Cui D. M., Liu X. L., Chen X. S.. Facile Synthesis of Hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-Lactide and kinetics study[J]. Macromolecules, 2010,43:6678-6684. doi: 10.1021/ma101202g

    17. [17]

      Zhao W., Liu B., Liu X. L., Wang X., Wang Y., Yao C. G., Wu C. J., Cui D. M.. Neutral lutetium complex/polyamine mediated immortal ring-opening polymerization of rac-lactide:facile synthesis of well-defined hydroxyl-end and amide-core stereoregular star polylactide[J]. Polym. Chem,, 2015,6:7711-7716. doi: 10.1039/C5PY01164G

    18. [18]

      Li C. Y., Liu X. L., He S. S., Huang Y. B., Cui D. M.. Synthesis and AIE properties of PEG-PLA-PMPC based triblock amphiphilic biodegradable polymers[J]. Polym. Chem,, 2016,7:1121-1128. doi: 10.1039/C5PY01849H

    19. [19]

      Amgoune A., Thomas C. M., Roisnel T., Carpentier J. F.. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands:combining high activity, productivity, and selectivity[J]. Chem. Eur. J., 2006,12:169-179. doi: 10.1002/(ISSN)1521-3765

    20. [20]

      Ma H., Okuda J.. Kinetics and mechanism of L-lactide polymerization by rare earth metal silylamido complexes:effect of alcohol addition[J]. Macromolecules, 2005,38:2665-2673. doi: 10.1021/ma048284l

    21. [21]

      Ajellal N., Lyubov D. M., Sinenkov M. A., Fukin G. K., Cherkasov A. V., Thomas C. M., Carpentier J. F., Trifonov A. A.. Bis(guanidinate) alkoxide complexes of lanthanides:synthesis, structures and use in immortal and stereoselective ring-opening polymerization of cyclic esters[J]. Chem. Eur. J., 2008,14:5440-5448. doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Cowman C. D., Padgett E., Tan K. W., Hovden R., Gu Y., Andrejevic N., Muller D., Coates G. W., Wiesner U.. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers[J]. J. Am. Chem. Soc., 2015,137:6026-6033. doi: 10.1021/jacs.5b01915

    23. [23]

      Thevenon A., Romain C., Bennington M. S., White A. J. P., Davidson H. J., Brooker S., Williams C. K.. Dizinc lactide polymerization catalysts:hyperactivity by control of ligand conformation and metallic cooperativity[J]. Angew. Chem. Int. Ed., 2016,55:8680-8685. doi: 10.1002/anie.201602930

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    3. [3]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    4. [4]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    5. [5]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    6. [6]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    7. [7]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    8. [8]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    9. [9]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    10. [10]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    11. [11]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    12. [12]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    13. [13]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    14. [14]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    15. [15]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    16. [16]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    19. [19]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    20. [20]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

Metrics
  • PDF Downloads(0)
  • Abstract views(826)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return