Citation: Yu Pan, Ting-Yun Wang, Xiao-Ming Yan, Xiao-Wei Xu, Qi-Dong Zhang, Bao-Lin Zhao, Issam El Hamouti, Ce Hao, Gao-Hong He. Benzimidazolium Functionalized Polysulfone-based Anion Exchange Membranes with Improved Alkaline Stability[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 129-138. doi: 10.1007/s10118-018-2049-3 shu

Benzimidazolium Functionalized Polysulfone-based Anion Exchange Membranes with Improved Alkaline Stability

  • Corresponding author: Gao-Hong He, hgaohong@dlut.edu.cn
  • Received Date: 11 June 2017
    Accepted Date: 22 September 2017
    Available Online: 7 November 2017

  • The stability of anion exchange membranes (AEMs) is an important feature of alkaline exchange membrane fuel cells (AEMFCs), which has been extensively studied. However it remains a real challenge due to the harsh working condition. Herein, we developed a novel type of polysulfone-based AEMs with three modified 1, 2-dimethylbenzimidazoliums containing different substitutes at C4- and C7-position. The results showed that the introduction of the substitutes could obviously improve the dimensional and alkaline stabilities of the corresponding membranes. The swelling ratios of resultant AEMs were all lower than 10% after water immersion. The membrane with 4, 7-dimethoxy-1, 2-dimethylbenzimidazolium group exhibited the highest alkaline stability. Only 9.2% loss of hydroxide conductivity was observed after treating the membrane in 1 mol·L-1 KOH solution at 80℃ for 336 h. Furthermore, the density functional theory (DFT) study on the three functional group models showed that the substitutes at C4- and C7-position affected the lowest unoccupied molecular orbital (LUMO) energies of the different 1, 2-dimethylbenzimidazolium groups.
  • 加载中
    1. [1]

      Steele B. C. H., Heinzel A.. Materials for fuel-cell technologies[J]. Nature, 2001,414(6816):345-352.  

    2. [2]

      Carrette L., Friedrich K. A., Stimming U.. Fuel cells-fundamentals and applications[J]. Fuel Cells, 2001,1(1):5-39. doi: 10.1002/(ISSN)1615-6854

    3. [3]

      Mehta V., Cooper J. S.. Review and analysis of PEM fuel cell design and manufacturing[J]. J. Power Sources, 2003,114(1):32-53. doi: 10.1016/S0378-7753(02)00542-6

    4. [4]

      Zhang S. H., Zhou J., Jian X. G.. Synthesis and properties of sulfonated poly(ether ketone)s containing 3, 5-dimethyl phthalazinone moieties as proton exchange membrane materials[J]. Chinese J. Polym. Sci., 2012,30(4):511-519. doi: 10.1007/s10118-012-1129-z

    5. [5]

      Lei R., Kang C. Q., Huang Y. J., Qiu X. P., Ji X. L., Xing W., Gao L. X.. Sulfonated polyimides containing pyridine groups as proton exchange membrane materials[J]. Chinese J. Polym. Sci., 2011,29(5):532-539. doi: 10.1007/s10118-011-1063-5

    6. [6]

      Borup R., Meyers J., Pivovar B., Kim Y. S., Mukundan M., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenay P., More K., Stroh K., Zawodzinski T., Boncella J., McGrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K., Iwashita N.. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007,107(10):3904-3951. doi: 10.1021/cr050182l

    7. [7]

      Varcoe J. R., Slade R. C. T.. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005,5(2):187-200. doi: 10.1002/fuce.v5:2

    8. [8]

      Tanaka M., Fukasawa K., Nishino E., Yamaguchi S., Yamada K., Tanaka H., Bae B., Miyatake K., Watanabe M.. Anion conductive block poly(arylene ether)s:synthesis, properties, and application in alkaline fuel cells[J]. J. Am. Chem. Soc., 2011,133(27):10646-10654. doi: 10.1021/ja204166e

    9. [9]

      Gu S., Cai R., Yan Y. S.. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes[J]. Chem. Commun., 2011,47:2856-2858. doi: 10.1039/c0cc04335d

    10. [10]

      Varcoe J. R., Atanassov P., Dekel D. R., Herring A. M., Hickner M. A., Kohl P. A., Kucernak A. R., Mustain W. E., Nijmeijer K., Scott K., Xu T., Zhuang L.. Anion-exchange membranes in electrochemical energy systems[J]. Energy Environ. Sci., 2014,7:3135-3191. doi: 10.1039/C4EE01303D

    11. [11]

      Wang Y. J., Qiao J., Baker R., Zhang J.. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem. Soc. Rev., 2013,42:5768-5787. doi: 10.1039/c3cs60053j

    12. [12]

      Li Q., Liu L., Miao Q., Jin B., Bai R.. A novel poly(2, 6-dimethyl-1, 4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes[J]. Chem. Commun., 2014,50:2791-2793. doi: 10.1039/c3cc47897a

    13. [13]

      Zhu L., Zimudzi T. J., Li N., Pan J., Lin B., Hickner M. A.. Crosslinking of comb-shaped polymer anion exchange membranes via thiol-ene click chemistry[J]. Polym. Chem., 2016,7:2464-2475. doi: 10.1039/C5PY01911G

    14. [14]

      Edson J. B., Macomber C. S., Pivovar B. S., Boncella J. M.. Hydroxide based decomposition pathways of alkyltrimethylammonium cations[J]. J. Membr. Sci., 2012,399:49-59.  

    15. [15]

      Mohanty A. D., Bae C.. Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells[J]. J. Mater. Chem. A, 2014,2:17314-17320. doi: 10.1039/C4TA03300K

    16. [16]

      Cheng J., Yang G., Zhang K., He G., Jia J., Yu H., Gai F., Li L., Hao C., Zhang F.. Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application[J]. J. Membr. Sci., 2016,501:100-108. doi: 10.1016/j.memsci.2015.12.012

    17. [17]

      Zhang B., Gu S., Wang J., Liu Y., Herring A. M., Yan Y.. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes[J]. RSC Adv., 2012,2:12683-12685. doi: 10.1039/c2ra21402d

    18. [18]

      Vöge A., Deimede V., Kallitsis J. K.. Synthesis and properties of alkaline stable pyridinium containing anion exchange membranes[J]. RSC Adv., 2014,4:45040-45049. doi: 10.1039/C4RA07616H

    19. [19]

      Kim D. S., Fujimoto C. H., Hibbs M. R., Labouriau A., Choe Y. K., Kim Y. S.. Resonance stabilized perfluorinated ionomers for alkaline membrane fuel cells[J]. Macromolecules, 2013,46(19):7826-7833. doi: 10.1021/ma401568f

    20. [20]

      Liu L., Li Q., Dai J., Wang H., Jin B., Bai R.. A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability[J]. J. Membr. Sci., 2014,453:52-60. doi: 10.1016/j.memsci.2013.10.054

    21. [21]

      Chen Y., Tao Y., Wang J., Yang S., Cheng S., Wei H., Ding Y.. Comb-shaped guanidinium functionalized poly(ether sulfone)s for anion exchange membranes:effects of the spacer types and lengths[J]. J. Polym. Sci., Part A:Polym. Chem., 2017,55(8):1313-1321. doi: 10.1002/pola.v55.8

    22. [22]

      Ye Y., Stokes K. K., Beyer F. L., Elabd Y. A.. Development of phosphonium-based bicarbonate anion exchange polymer membranes[J]. J. Membr. Sci., 2013,443:93-99. doi: 10.1016/j.memsci.2013.04.053

    23. [23]

      Jangu C., Long T. E.. Phosphonium cation-containing polymers:from ionic liquids to polyelectrolytes[J]. Polymer, 2014,55(16):3298-3304. doi: 10.1016/j.polymer.2014.04.015

    24. [24]

      Liu Y., Zhang B. Z., Kinsinger C. L., Yang Y., Seifert S., Yan Y., Maupin C. M., Liberatore M. W., Herring A. M.. Anion exchange membranes composed of a poly(2, 6-dimethyl-1, 4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation[J]. J. Membr. Sci., 2016,506:50-59. doi: 10.1016/j.memsci.2016.01.042

    25. [25]

      Lin X., Varcoe J. R., Poynton S. D., Liang X., Ong A. L., Ran J., Li Y., Xu T.. Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells[J]. J. Mater. Chem. A, 2013,1:7262-7269. doi: 10.1039/c3ta10308k

    26. [26]

      Rao A. H. N., Nam S., Kim T. H.. Comb-shaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anion-exchange membranes[J]. J. Mater. Chem. A, 2015,3:8571-8580. doi: 10.1039/C5TA01123J

    27. [27]

      Gao, He, Pan, Zhao, Xu, Liu, Deng, Y, X. Poly(2, 6-dimethyl-1, 4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity[J]. J. Membr. Sci., 2016,518:159-167. doi: 10.1016/j.memsci.2016.07.012

    28. [28]

      Zhang F., Zhang H., Qu C.. Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application[J]. J. Mater. Chem., 2011,21:12744-12752. doi: 10.1039/c1jm10656b

    29. [29]

      Lin B., Dong H., Li Y., Si Z., Gu F., Yan F.. Alkaline stable C2-substituted Imidazolium-based anion-exchange membranes[J]. Chem. Mater., 2013,25(9):1858-1867. doi: 10.1021/cm400468u

    30. [30]

      Hugar K. M., Kostalik H. A., Coates G. W.. Imidazolium cations with exceptional alkaline stability:a systematic study of structure-stability relationships[J]. J. Am. Chem. Soc., 2015,137(27):8730-8737. doi: 10.1021/jacs.5b02879

    31. [31]

      Thomas O. D., Soo K. J. W. Y., Peckham T. J., Kulkarni M. P., Holdcroft S.. Anion conducting poly(dialkyl benzimidazolium) salts[J]. Polym. Chem., 2011,2:1641-1643. doi: 10.1039/c1py00142f

    32. [32]

      Thomas O. D., Soo K. J. W. Y., Peckham T. J., Kulkarni M. P., Holdcroft S.. A stable hydroxide-conducting polymer[J]. J. Am. Chem. Soc., 2012,134(26):10753-10756. doi: 10.1021/ja303067t

    33. [33]

      Wright A. G., Weissbach T., Holdcroft S.. Poly(phenylene) and m-terphenyl as powerful protecting groups for the preparation of stable organic hydroxides[J]. Angew. Chem. Int. Ed., 2016,55(15):4818-4821. doi: 10.1002/anie.201511184

    34. [34]

      Wright A. G., Holdcroft S.. Hydroxide-stable ionenes[J]. ACS Macro Lett., 2014,3(5):444-447. doi: 10.1021/mz500168d

    35. [35]

      Lin X., Liang X., Poynton S. D., Varcoe J. R., Ong A. L., Ran J., Li Y., Li Q., Xu T.. Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells[J]. J. Membr. Sci., 2013,443:193-200. doi: 10.1016/j.memsci.2013.04.059

    36. [36]

      Warshawsky A., Deshe A.. Halomethyl octyl ethers:Convenient halomethylation reagents.[J]. J. Polym. Sci., Part A:Polym. Chem., 1985,23(6):1839-1841. doi: 10.1002/pol.1985.170230623

    37. [37]

      Pilarski B.. A new method for N-alkylation of imidazoles and benzimidazoles[J]. Liebigs Ann. Chem., 1983,6(15):1078-1080.  

    38. [38]

      Xu L., Huang Z. H., Sandoval C. A., Gu L. Q., Huang Z. S.. Asymmetric hydrogenation of 3, 5-bistrifluoromethyl acetophenone in pilot scale with industrially viable ru/diphosphine-benzimidazole complexes[J]. Org. Process Res. Dev., 2014,18(9):1137-1141. doi: 10.1021/op500148k

    39. [39]

      Weinberger L., Day A. R.. Syntheses of dimethoxybenzimidazoles, dihydroxybenzimidazoles and imidazo-p-benzoquinones[J]. J. Org. Chem., 1959,24(10):1451-1455. doi: 10.1021/jo01092a017

    40. [40]

      Skibo E. B.. Studies of extended quinone methides[J]. The hydrolysis mechanism of 1-methyl-2-(bromomethyl)-4, 7-dihydroxybenzimidazole. J. Org. Chem., 1986,51(4):522-527.  

    41. [41]

      Yan X., Gao L., Zheng W., Ruan X., Zhang C., Wu X., He G.. Long-spacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell[J]. Int. J. Hydrogen Energy, 2016,41(33):14982-14990. doi: 10.1016/j.ijhydene.2016.06.030

    42. [42]

      Zhao, B. ; He, G. ; El Hamouti, I. ; Gao, L. ; Liu, Y. ; Deng, R. ; Yan, X. Int. J. Hydrogen Energy 2017, DOI: 10.1016/j.ijhydene.2017.01.170

    43. [43]

      G u, S. He G., Wu X., Li C., Liu H., Lin C., Li X.. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC)[J]. J. Membr. Sci., 2006,281:121-129. doi: 10.1016/j.memsci.2006.03.021

    44. [44]

      Wang J., Li S., Zhang S.. Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications[J]. Macromolecules, 2010,43(8):3890-3896. doi: 10.1021/ma100260a

    45. [45]

      Lin B., Qiu L., Lu J., Yan F.. Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications[J]. Chem. Mater., 2010,22(24):6718-6725. doi: 10.1021/cm102957g

    46. [46]

      Pernpointner. M., Hashmi A. S. K. Fully relativistic, comparative investigation of gold and platinum alkyne complexes of relevance for the catalysis of nucleophilic additions to alkynes[J]. J. Chem. Theory Comput., 2009,5(10):2717-2725. doi: 10.1021/ct900441f

  • 加载中
    1. [1]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    2. [2]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    3. [3]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    4. [4]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    5. [5]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    6. [6]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    7. [7]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    8. [8]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    9. [9]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    10. [10]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    11. [11]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    12. [12]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    13. [13]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    14. [14]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    15. [15]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    16. [16]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    17. [17]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    18. [18]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    19. [19]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    20. [20]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

Metrics
  • PDF Downloads(0)
  • Abstract views(854)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return