Citation: Yang Li, Ying-Ying Zhang, Bin Liu, Xing-Hong Zhang. HCAⅡ-inspired Catalysts for Making Carbon Dioxide-based Copolymers: The Role of Metal-hydroxide Bond[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 139-148. doi: 10.1007/s10118-018-2047-5 shu

HCAⅡ-inspired Catalysts for Making Carbon Dioxide-based Copolymers: The Role of Metal-hydroxide Bond

  • Corresponding author: Xing-Hong Zhang, xhzhang@zju.edu.cn
  • Received Date: 30 August 2017
    Accepted Date: 21 September 2017
    Available Online: 21 November 2017

  • The general characteristics of the active center of the catalysts (including zinc-cobalt(Ⅲ) double metal cyanide complex [Zn-Co(Ⅲ) DMCC]) for the copolymerization reaction of carbon dioxide (CO2) with epoxide are summarized. By comparing the active center, catalytic performance of the Zn-Co(Ⅲ) DMCC (and other catalysts) with HCAII enzyme in the organism for activating CO2 (COS and CS2), we proposed that the metal-hydroxide bond (M-OH), which is the real catalytic center of human carbonic anhydride II (HCAII), is also the catalytic (initiating) center for the copolymerization. It accelerates the copolymerization and forms a closed catalytic cycle through the chain transfer reaction to water (and thus strictly meets the definition of the catalyst). In addition, the metal-hydroxide bond catalysis could well explain the oxygen/sulfur exchange reaction (O/S ER) in metal (Zn, Cr)-catalyzed copolymerization of COS (and CS2) with epoxides. Therefore, it is very promising to learn from HCAII enzyme to develop biomimetic catalyst for highly active CO2/epoxide copolymerization in a well-controlled manner under mild conditions.
  • 加载中
    1. [1]

      Kember M. R., Buchard A., Williams C. K.. Catalysts for CO2/epoxide copolymerization[J]. Chem. Commun., 2011,47(1):141-163. doi: 10.1039/C0CC02207A

    2. [2]

      Kacholia K., Reck R. A.. Comparison of global climate change simulations for CO2-induced warming[J]. Clim. Change, 1997,35(1):53-69. doi: 10.1023/A:1005372618899

    3. [3]

      Meehl G. A., Washington W. M.. El ni o-like climate change in a model with increased atmospheric CO2 concentrations[J]. Nature, 1996,382(6586):56-60. doi: 10.1038/382056a0

    4. [4]

      Hewitt C. N.. Carbon dioxide chemistry: environmental issues[J]. J. Chem. Technol. Biotechnol., 1996,66(4):422-422.

    5. [5]

      Schäffner B., Schäffner F., Verevkin S. P., B rner A.. Organic carbonates as solvents in synthesis and catalysis[J]. Chem. Rev., 2010,110(8):4554-4581. doi: 10.1021/cr900393d

    6. [6]

      Kuran W.. Coordination polymerization of heterocyclic and heterounsaturated monomers[J]. Prog. Polym. Sci., 1998,23(97):919-992.  

    7. [7]

      Rokicki G.. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers[J]. Prog. Polym. Sci., 2000,25(2):259-342. doi: 10.1016/S0079-6700(00)00006-X

    8. [8]

      Kothandaraman J., Goeppert A., Czaun M., Olah G. A., Prakash G. K. S.. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016,138(3):778-781. doi: 10.1021/jacs.5b12354

    9. [9]

      Meylan F. D., Moreau V., Erkman S.. CO2 utilization in the perspective of industrial ecology, an overview[J]. J. CO2 Util., 2015,12:101-108. doi: 10.1016/j.jcou.2015.05.003

    10. [10]

      Wesselbaum S., Vom Stein T., Klankermayer P. J., Leitner P. W.. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst[J]. Angew. Chem. Int. Ed., 2012,51(51):7499-7502.  

    11. [11]

      Omae I.. Aspects of carbon dioxide utilization[J]. Catal. Today, 2006,115(1-4):33-52. doi: 10.1016/j.cattod.2006.02.024

    12. [12]

      Yamaguchi K., Ebitani K., Yoshida T., Yoshida H., Kaneda K.. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc., 1999,121(18):4526-4527. doi: 10.1021/ja9902165

    13. [13]

      Inoue S., Koinuma H., Tsuruta T.. Copolymerization of carbon dioxide and epoxide[J]. J. Polym. Sci., Part B: Polym. Lett., 1969,7(4):287-292. doi: 10.1002/pol.1969.110070408

    14. [14]

      Coates G. W., Moore D. R.. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism[J]. Angew. Chem. Int. Ed., 2004,43(48):6618-6639. doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Lu X. B., Ren W. M., Wu G. P.. CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control[J]. Acc. Chem. Res., 2012,45(10):1721-1735. doi: 10.1021/ar300035z

    16. [16]

      Darensbourg D. J., Wilson S. J.. What's new with CO2? Recent advances in its copolymerization with oxiranes[J]. Green Chem., 2012,14(10):2665-2671. doi: 10.1039/c2gc35928f

    17. [17]

      Klaus S., Lehenmeier M. W., Anderson C. E., Rieger B.. Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms[J]. Coord. Chem. Rev., 2011,255(13):1460-1479.

    18. [18]

      Darensbourg D. J., Holtcamp M. W.. Catalysts for the reactions of epoxides and carbon dioxide[J]. Coord. Chem. Rev., 1996,153(95):155-174.  

    19. [19]

      Bruckmeier C., Lehenmeier M. W., Reichardt R., Vagin S., Rieger B.. Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones[J]. Organometallics, 2010,29(10):2199-2202. doi: 10.1021/om100060y

    20. [20]

      Sakakura T., Choi J. C., Yasuda H.. Transformation of carbon dioxide[J]. Chem. Rev., 2007,107(36):2365-2387.  

    21. [21]

      Nakano R., Ito S., Nozaki K.. Copolymerization of carbon dioxide and butadiene via a lactone intermediate[J]. Nat. Chem., 2014,6(4):325-331. doi: 10.1038/nchem.1882

    22. [22]

      Dibenedetto A., Angelini A., Stufano P.. Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis[J]. J. Chem. Technol. Biotechnol., 2014,89(3):334-353. doi: 10.1002/jctb.2014.89.issue-3

    23. [23]

      von der Assen N., Bardow A.. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study[J]. Green Chem., 2014,16(6):3272-3280. doi: 10.1039/C4GC00513A

    24. [24]

      Kissling S., Lehenmeier M. W., Altenbuchner P. T., Kronast A., Reiter M., Deglmann P., Seemann U. B., Rieger B.. Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO2[J]. Chem. Commun., 2015,51(22):4579-4582. doi: 10.1039/C5CC00784D

    25. [25]

      Lindskog S.. Structure and mechanism of carbonic anhydrase[J]. Pharmacol. Ther., 1997,74(1):1-20. doi: 10.1016/S0163-7258(96)00198-2

    26. [26]

      Qin Y. S., Sheng X. S., Liu S. J., Ren G. J., Wang X. H., Wang F. S.. Recent advances in carbon dioxide based copolymers[J]. J. CO2 Util., 2015,11:3-9. doi: 10.1016/j.jcou.2014.10.003

    27. [27]

      Kuran W., Pasynkiewicz S., Skupińska J., Rokicki A.. Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts[J]. Makroml. Chem., 1976,177(1):11-20. doi: 10.1002/macp.1976.021770102

    28. [28]

      Góarecki P., Kuran W., Góarecki P., Kuran W.. Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide: activity in copolymerization and copolymer destruction processes[J]. J. Polym. Sci., Part C: Polym. Lett., 1985,23(6):299-304. doi: 10.1002/pol.1985.130230603

    29. [29]

      Soga K., Imai E., Hattori I.. Alternating copolymerization of CO2 and propylene oxide with the catalysts prepared from Zn(OH)2 and various dicarboxylic acids[J]. Polym. J., 1981,13(4):407-410. doi: 10.1295/polymj.13.407

    30. [30]

      Luinstra G. A.. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: Catalysis and material properties[J]. Polym. Rev., 2008,48(1):192-219. doi: 10.1080/15583720701834240

    31. [31]

      Ree M., Bae J. Y., Jung J. H., Shin T. J.. A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide[J]. J. Polym. Sci., Part A: Polym. Chem., 1999,37(12)876.  

    32. [32]

      Eberhardt R., Allmendinger M., Zintl M., Troll C., Luinstra G. A., Rieger B.. New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: Activity enhancement through Zn(Ⅱ)-ethylsulfinate initiating groups[J]. Macromol. Chem. Phys., 2004,205(1):42-47. doi: 10.1002/(ISSN)1521-3935

    33. [33]

      Meng Y. Z., Du L. C., Tiong S. C., Zhu Q., Hay A. S.. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer[J]. J. Polym. Sci., Part A: Polym. Chem., 2002,40(21):3579-3591. doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Chen X., Shen Z., Zhang Y.. New catalytic systems for the fixation of carbon dioxide[J]. 1. Copolymerization of carbon dioxide and propylene oxide with new rare-earth catalysts-RE(P204)3-Al(i-Bu)3-R(OH)n. Macromolecules, 1991,24(19):5305-5308.  

    35. [35]

      Liu B., Zhao X., Wang X., Wang F.. Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: The role of rare-earth compound in the catalytic system[J]. J. Polym. Sci., Part A: Polym. Chem., 2001,39(16):2751-2754. doi: 10.1002/(ISSN)1099-0518

    36. [36]

      Kruper, W. J., Swart, D. J., 1985, U. S. Pat., 4, 500, 704

    37. [37]

      Chen S., Hua Z. J., Fang Z., Qi G. R.. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate (Ⅲ)-based coordination catalyst[J]. Polymer, 2004,45(19):6519-6524. doi: 10.1016/j.polymer.2004.07.044

    38. [38]

      Finkelmann H., Ringsdorf H., Wendorff J. H.. Model considerations and examples of enantiotropic liquid crystalline polymers[J]. Polyreactions in ordered systems, 14. Makroml. Chem., 1978,179(1):273-276.

    39. [39]

      Darensbourg D. J., Holtcamp M. W.. Catalytic activity of zinc(Ⅱ) phenoxides which possess readily accessible coordination sites[J]. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules, 1995,28(22):7577-7579.  

    40. [40]

      Cheng M., Lobkovsky E. B., Coates G. W.. Catalytic reactions involving C1 feedstocks:  New high-activity Zn(Ⅱ)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides[J]. J. Am. Chem. Soc., 1998,120(42):11018-11019. doi: 10.1021/ja982601k

    41. [41]

      Lee B. Y., Kwon H. Y., Lee S. Y., Na S. J., Han S., Yun H., Lee H., Park Y. W.. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization[J]. J. Am. Chem. Soc., 2005,127(9):3031-3037. doi: 10.1021/ja0435135

    42. [42]

      Sugimoto H., Ohtsuka H., Inoue S.. Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum schiff base-ammonium salt system[J]. J. Polym. Sci., Part A: Polym. Chem., 2005,43(18):4172-4186. doi: 10.1002/(ISSN)1099-0518

    43. [43]

      Lu X. B., Wang Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions.[J]. Angew. Chem. Int. Ed., 2004,43(27):3574-3577. doi: 10.1002/(ISSN)1521-3773

    44. [44]

      Qin Z., Thomas C. M., Lee S., Coates G. W.. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis[J]. Angew. Chem. Int. Ed., 2003,42(44):5484-5487. doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Darensbourg D. J., Yarbrough J. C.. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. J. Am. Chem. Soc., 2002,124(22):6335-6342. doi: 10.1021/ja012714v

    46. [46]

      Sun X. K., Chen S., Zhang X. H., Qi G. R.. Double metal cyanide complex catalyst and its catalysis for epoxides-involved polymerization[J]. Prog. Chem., 2012,24(9):1776-1784.

    47. [47]

      Sun X. K., Zhang X. H., Wei R. J., Du B. Y., Wang Q., Fan Z. Q., Qi G. R.. Mechanistic insight into initiation and chain transfer reaction of CO2/cyclohexene oxide copolymerization catalyzed by zinc-cobalt double metal cyanide complex catalysts[J]. J. Polym. Sci., Part A: Polym. Chem., 2012,50(14):2924-2934. doi: 10.1002/pola.26074

    48. [48]

      Luo M., Zhang X. H., Du B. Y., Wang Q., Fan Z. Q.. Regioselective and alternating copolymerization of carbonyl sulfide with racemic propylene oxide[J]. Macromolecules, 2013,46(15):5899-5904. doi: 10.1021/ma401114m

    49. [49]

      Luo M., Zhang X. H., Du B. Y., Wang Q., Fan Z. Q.. Well-defined high refractive index poly(monothiocarbonate) with tunable abbe's numbers and glass-transition temperatures via terpolymerization[J]. Polym. Chem., 2015,6(27):4978-4983. doi: 10.1039/C5PY00773A

    50. [50]

      Luo M., Zhang X. H., Darensbourg D. J.. An examination of the steric and electronic effects in the copolymerization of carbonyl sulfide and styrene oxide[J]. Macromolecules, 2015,48(17):6057-6062. doi: 10.1021/acs.macromol.5b01427

    51. [51]

      Luo M., Zhang X. H., Darensbourg D. J.. Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether[J]. Polym. Chem., 2015,6(39):6955-6958. doi: 10.1039/C5PY01197C

    52. [52]

      Zhang X. H., Hua Z. J., Chen S., Liu F., Sun X. K., Qi G. R.. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide[J]. Appl. Catal., A, 2007,325(1):91-98. doi: 10.1016/j.apcata.2007.03.014

    53. [53]

      Sun X. K., Zhang X. H., Liu F., Chen S., Du B. Y., Wang Q., Fan Z. Q., Qi G. R.. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co(Ⅲ) double metal cyanide complex hybrid catalysts with a nanolamellar structure[J]. J. Polym. Sci., Part A: Polym. Chem., 2008,46(9):3128-3139. doi: 10.1002/(ISSN)1099-0518

    54. [54]

      Klaus S., Lehenmeier M. W., Herdtweck E., Deglmann P., Ott A. K., Rieger B.. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization[J]. J. Am. Chem. Soc., 2011,133(33):13151-13161. doi: 10.1021/ja204481w

    55. [55]

      Kim I., Yi M. J., Byun S. H., Park D. W., Kim B. U., Ha C. S.. Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex[J]. Macromol. Symp., 2005,224(1):181-192. doi: 10.1002/(ISSN)1521-3900

    56. [56]

      Zhang X. H., Chen S., Wu X. M., Sun X. K., Liu F., Qi G. R.. Highly active double metal cyanide complexes: Effect of central metal and ligand on reaction of epoxide/CO2[J]. Chin. Chem. Lett., 2007,18(7):887-890. doi: 10.1016/j.cclet.2007.05.017

    57. [57]

      Zhang X. H., Wei R. J., Sun X. K., Zhang J. F., Du B. Y., Fan Z. Q., Qi G. R.. Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures[J]. Polymer, 2011,52(24):5494-5502. doi: 10.1016/j.polymer.2011.09.040

    58. [58]

      Wei R. J., Zhang Y. Y., Zhang X. H., Du B. Y., Fan Z. Q.. Regio-selective synthesis of polyepichlorohydrin diol using Zn-Co(Ⅲ) double metal cyanide complex[J]. RSC Adv., 2014,4(42):21765-21771. doi: 10.1039/C4RA02394C

    59. [59]

      Kuyper J., Boxhoorn G.. Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves[J]. J. Catal., 1987,105(1):163-174. doi: 10.1016/0021-9517(87)90016-9

    60. [60]

      Zhang X. H., Wei R. J., Zhang Y. Y., Du B. Y., Fan Z. Q.. Carbon dioxide/epoxide copolymerization via a nanosized zinc-cobalt(Ⅲ) double metal cyanide complex: Substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures[J]. Macromolecules, 2015,48(3):536-544. doi: 10.1021/ma5023742

    61. [61]

      Chisholm M. H., Navarro-Llobet D., Zhou Z.. Poly(propylene carbonate)[J]. 1. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst. Macromolecules, 2002,35(17):6494-6504.  

    62. [62]

      Trott G., Saini P. K., Williams C. K.. Catalysts for CO2/epoxide ring-opening copolymerization[J]. Phil. Trans. R. Soc. A, 2016,374(2061).

    63. [63]

      Darensbourg D. J., Mackiewicz R. M., Phelps A. L., Billodeaux D. R.. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes[J]. Acc. Chem. Res., 2004,37(11):836-844. doi: 10.1021/ar030240u

    64. [64]

      Rao D. Y., Li B., Zhang R., Wang H., Lu X. B.. Binding of 4-(N, N-dimethylamino)pyridine to salen-and salan-Cr(Ⅲ) cations: A mechanistic understanding on the difference in their catalytic activity for CO2/epoxide copolymerization[J]. Inorg. Chem., 2009,48(7):2830-2836. doi: 10.1021/ic802384x

    65. [65]

      Darensbourg D. J., Mackiewicz R. M.. Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes[J]. J. Am. Chem. Soc., 2005,127(40):14026-14038. doi: 10.1021/ja053544f

    66. [66]

      Darensbourg D. J.. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2[J]. Chem. Rev., 2007,107(6):2388-2410. doi: 10.1021/cr068363q

    67. [67]

      Lu X. B., Darensbourg D. J.. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates[J]. Chem. Soc. Rev., 2012,41(4):1462-1484. doi: 10.1039/C1CS15142H

    68. [68]

      Childers M. I., Longo J. M., van Zee N. J., Lapointe A. M., Coates G. W.. Stereoselective epoxide polymerization and copolymerization[J]. Chem. Rev., 2014,114(16):8129-8152. doi: 10.1021/cr400725x

    69. [69]

      Darensbourg D. J., Mackiewicz R. M., Rodgers J. L., Fang C. C., Billodeaux D. R., Reibenspies J. H.. Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(Ⅲ) salen complexes and N-methylimidazole:  effects of varying salen ligand substituents and relative cocatalyst loading[J]. Inorg. Chem., 2004,43(19):6024-6034. doi: 10.1021/ic049182e

    70. [70]

      Nakano K., Kamada T., Nozaki K.. Selective formation of polycarbonate over cyclic carbonate: Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(Ⅲ) complex with a piperidinium end-capping arm[J]. Angew. Chem. Int. Ed., 2006,118(43):7432-7435. doi: 10.1002/(ISSN)1521-3757

    71. [71]

      Kember M. R., White A. J. P., Williams C. K.. Highly active di-and trimetallic cobalt catalysts for the copolymerization of CHO and CO2 at atmospheric pressure[J]. Macromolecules, 2010,43(5):2291-2298. doi: 10.1021/ma902582m

    72. [72]

      Qin Y., Wang X., Zhang S., Zhao X., Wang F.. Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight[J]. J. Polym. Sci., Part A: Polym. Chem., 2008,46(17):5959-5967. doi: 10.1002/pola.v46:17

    73. [73]

      Na S. J., Sujith S., Cyriac A., Kim B. E., Yoo J., Kang Y. K., Han S. J., Lee C., Lee B. Y.. Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization: a salen-cobaltate complex of an unusual binding mode[J]. Inorg. Chem., 2009,48(21):10455-10465. doi: 10.1021/ic901584u

    74. [74]

      Klaus S., Vagin S. I., Lehenmeier M. W., Deglmann P., Brym A. K., Rieger B.. Kinetic and mechanistic investigation of mononuclear and flexibly linked dinuclear complexes for copolymerization of CO2 and epoxides[J]. Macromolecules, 2011,44(24):9508-9516. doi: 10.1021/ma201387f

    75. [75]

      Salmeia K. A., Vagin S., Anderson C. E., Rieger B.. Poly(propylene carbonate): Insight into the microstructure and enantioselective ring-opening mechanism[J]. Macromolecules, 2012,45(21):8604-8613. doi: 10.1021/ma301916r

    76. [76]

      Kupriyanova E., Pronina N., Los D.. Carbonic anhydrase-a universal enzyme of the carbon-based life[J]. Photosynthetica, 2017,55(1):3-19. doi: 10.1007/s11099-017-0685-4

    77. [77]

      Supuran, C. T., "Carbonic anhydrase: its inhibitors and activators", CRC Press, Boca Raton, 2004, p. 1

    78. [78]

      Supuran C. T.. Structure and function of carbonic anhydrases[J]. Biochem. J., 2016,473(14)2023. doi: 10.1042/BCJ20160115

    79. [79]

      Eriksson A. E., Jones T. A., Liljas A.. Refined structure of human carbonic anhydrase Ⅱ at 2[J]. 0 Å resolution. Proteins Struct. Funct. Bioinf., 1988,4(4):274-282. doi: 10.1002/(ISSN)1097-0134

    80. [80]

      Bräuer M., Pérez-Lustres J. L., Weston J., Anders E.. Quantitative reactivity model for the hydration of carbon dioxide by biomimetic zinc complexes[J]. Inorg. Chem., 2002,41(6):1454-1463. doi: 10.1021/ic0010510

    81. [81]

      Vallee B. L., Auld D. S.. Zinc: Biological functions and coordination motifs[J]. Acc. Chem. Res., 1993,26(10):543-551. doi: 10.1021/ar00034a005

    82. [82]

      Boone C. D., Pinard M., McKenna R., Silverman D.. "Catalytic mechanism of α-class carbonic anhydrases: CO2 Hydration and Proton Transfer"[J]. Springer Netherlands, Dordrecht, 2014p. 31.

    83. [83]

      Tripp B. C., Smith K., Ferry J. G.. Carbonic anhydrase: New insights for an ancient enzyme[J]. J. Biol. Chem., 2001,276(52):48615-48618. doi: 10.1074/jbc.R100045200

    84. [84]

      Xu Y., Feng L., Jeffrey P. D., Shi Y., Morel F. M.. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms[J]. Nature, 2008,452(7183):56-61. doi: 10.1038/nature06636

    85. [85]

      Zimmerman S. A., Tomb J. F., Ferry J. G.. Characterization of camh from methanosarcina thermophila, founding member of a subclass of the γ class of carbonic anhydrases[J]. J. Bacteriol., 2010,192(5):1353-1360. doi: 10.1128/JB.01164-09

    86. [86]

      Iverson T. M., Alber B. E., Kisker C., Ferry J. G., Rees D. C.. A closer look at the active site of gamma-class carbonic anhydrases: High-resolution crystallographic studies of the carbonic anhydrase from methanosarcina thermophila[J]. Biochemistry, 2000,39(31):9222-9231. doi: 10.1021/bi000204s

    87. [87]

      Darensbourg D. J., Niezgoda S. A., Holtcamp M. W., Draper J. D., Reibenspies , J. H.. Syntheses, structures, and binding constants of cyclic ether and thioether adducts of soluble cadmium(Ⅱ) carboxylates. Intermediates in the homopolymerization of oxiranes and thiiranes and in carbon dioxide coupling processes.[J]. Inorg. Chem., 1997,36(11)2426. doi: 10.1021/ic9701120

    88. [88]

      Buchard A., Kember M. R., Sandeman K. G., Williams C. K.. A bimetallic iron(Ⅲ) catalyst for CO2/epoxide coupling[J]. Chem. Commun., 2011,47(1):212-214. doi: 10.1039/C0CC02205E

    89. [89]

      Schenk S., Notni J., Kohn U., Wermann K., Anders E.. Carbon dioxide and related heterocumulenes at zinc and lithium cations: Bioinspired reactions and principles[J]. Dalton Trans., 2006(35):4191-4206. doi: 10.1039/B608534B

    90. [90]

      Brauer M., Anders E., Sinnecker S., Koch W., Rombach M., Brombacher H., Vahrenkamp H.. The TpZn-OH/CS2 reaction: Theoretical and preparative visualization of an essential bioinorganic reaction path[J]. Chem. Commun., 2000(8):647-648. doi: 10.1039/b001149p

    91. [91]

      Rombach M., Vahrenkamp H.. Pyrazolylborate-zinc-hydrosulfide complexes and their reactions[J]. Inorg. Chem., 2001,40(24):6144-6150. doi: 10.1021/ic010510+

    92. [92]

      Zhang X. H., Liu F., Sun X. K., Chen S., Du B. Y., Qi G. R., Wan K. M.. Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex[J]. Macromolecules, 2008,41(5):1587-1590. doi: 10.1021/ma702290g

    93. [93]

      Zhang X. H., Huang Y. J., Liu F., Sun X. K., Fan Z. Q., Qi G. R.. Copolymerization of carbon disulfide and cyclohexene oxide with a double-metal cyanide complex catalyst[J]. Acta Polymerica Sinica (in Chinese), 2009(6):546-552.

    94. [94]

      Darensbourg D. J., Andreatta J. R., Jungman M. J., Reibenspies J. H.. Investigations into the coupling of cyclohexene oxide and carbon disulfide catalyzed by (salen)CrCl[J]. Selectivity for the production of copolymers vs. Cyclic thiocarbonates. Dalton Trans., 2009(41):8891-8899.  

    95. [95]

      Darensbourg D. J., Wilson S. J., Yeung A. D.. Oxygen/sulfur scrambling during the copolymerization of cyclopentene oxide and carbon disulfide: Selectivity for copolymer versus cyclic thiocarbonates[J]. Macromolecules, 2013,46(20):8102-8110. doi: 10.1021/ma4015438

    96. [96]

      Luo M., Zhang X. H., Darensbourg D. J.. An investigation of the pathways for oxygen/sulfur scramblings during the copolymerization of carbon disulfide and oxetane[J]. Macromolecules, 2015,48(16):5526-5532. doi: 10.1021/acs.macromol.5b01251

    97. [97]

      Luo M., Zhang X. H., Darensbourg D. J.. Synthesis of cyclic monothiocarbonates via the coupling reaction of carbonyl sulfide (COS) with epoxides[J]. Catal. Sci. Technol., 2015,6(1):188-192.  

    98. [98]

      Luo M., Zhang X. H., Darensbourg D. J.. Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides[J]. Acc. Chem. Res., 2016,49(10):2209-2219. doi: 10.1021/acs.accounts.6b00345

    99. [99]

      Darensbourg D. J., Moncada A. I., Choi W., Reibenspies J. H.. Mechanistic studies of the copolymerization reaction of oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (salen)CrX complexes[J]. J. Am. Chem. Soc., 2008,130(20):6523-6533. doi: 10.1021/ja800302c

    100. [100]

      Lu X. B., Shi L., Wang Y. M., Zhang R., Zhang Y. J., Peng X. J., Zhang Z. C., Li B.. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: Polymer selectivity, enantioselectivity, and stereochemistry control[J]. J. Am. Chem. Soc., 2006,128(5):1664-1674. doi: 10.1021/ja056383o

    101. [101]

      Zhang D., Boopathi S. K., Hadjichristidis N., Gnanou Y., Feng X.. Metal-free alternating copolymerization of CO2 with epoxides: Fulfilling "gre]en" synthesis and activity[J]. J. Am. Chem. Soc., 2016,138(35):11117-11120. doi: 10.1021/jacs.6b06679

    102. [102]

      Wei R. J., Zhang X. H., Du B. Y., Sun X. K., Fan Z. Q., Qi G. R.. Highly regioselective and alternating copolymerization of racemic styrene oxide and carbon dioxide via heterogeneous double metal cyanide complex catalyst[J]. Macromolecules, 2013,46(9):3693-3697. doi: 10.1021/ma4004709

    103. [103]

      Inoue S.. Immortal polymerization: The outset, development, and application[J]. J. Polym. Sci., Part A: Polym. Chem., 2000,38(16):2861-2871. doi: 10.1002/(ISSN)1099-0518

    104. [104]

      Hirano T., Inoue S., Tsuruta T.. Stereochemistry of the copolymerization of carbon dioxide with optically active phenylepoxyethane[J]. Makroml. Chem., 1975,176(7):1913-1917. doi: 10.1002/macp.1975.021760701

    105. [105]

      Eger W. A., Presselt M., Jahn B. O., Schmitt M., Popp J., Anders E.. Metal-mediated reaction modeled on nature: The activation of isothiocyanates initiated by zinc thiolate complexes[J]. Inorg. Chem., 2011,50(8):3223-3233. doi: 10.1021/ic101464j

    106. [106]

      Luo M., Li Y., Zhang Y. Y., Zhang X. H.. Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis[J]. Polymer, 2016,82:406-431. doi: 10.1016/j.polymer.2015.11.011

  • 加载中
    1. [1]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    4. [4]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    5. [5]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    10. [10]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    11. [11]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    16. [16]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    17. [17]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    18. [18]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    19. [19]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return