HCAⅡ-inspired Catalysts for Making Carbon Dioxide-based Copolymers: The Role of Metal-hydroxide Bond
- Corresponding author: Xing-Hong Zhang, xhzhang@zju.edu.cn
Citation: Yang Li, Ying-Ying Zhang, Bin Liu, Xing-Hong Zhang. HCAⅡ-inspired Catalysts for Making Carbon Dioxide-based Copolymers: The Role of Metal-hydroxide Bond[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 139-148. doi: 10.1007/s10118-018-2047-5
Kember M. R., Buchard A., Williams C. K.. Catalysts for CO2/epoxide copolymerization[J]. Chem. Commun., 2011,47(1):141-163. doi: 10.1039/C0CC02207A
Kacholia K., Reck R. A.. Comparison of global climate change simulations for CO2-induced warming[J]. Clim. Change, 1997,35(1):53-69. doi: 10.1023/A:1005372618899
Meehl G. A., Washington W. M.. El ni o-like climate change in a model with increased atmospheric CO2 concentrations[J]. Nature, 1996,382(6586):56-60. doi: 10.1038/382056a0
Hewitt C. N.. Carbon dioxide chemistry: environmental issues[J]. J. Chem. Technol. Biotechnol., 1996,66(4):422-422.
Schäffner B., Schäffner F., Verevkin S. P., B rner A.. Organic carbonates as solvents in synthesis and catalysis[J]. Chem. Rev., 2010,110(8):4554-4581. doi: 10.1021/cr900393d
Kuran W.. Coordination polymerization of heterocyclic and heterounsaturated monomers[J]. Prog. Polym. Sci., 1998,23(97):919-992.
Rokicki G.. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers[J]. Prog. Polym. Sci., 2000,25(2):259-342. doi: 10.1016/S0079-6700(00)00006-X
Kothandaraman J., Goeppert A., Czaun M., Olah G. A., Prakash G. K. S.. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016,138(3):778-781. doi: 10.1021/jacs.5b12354
Meylan F. D., Moreau V., Erkman S.. CO2 utilization in the perspective of industrial ecology, an overview[J]. J. CO2 Util., 2015,12:101-108. doi: 10.1016/j.jcou.2015.05.003
Wesselbaum S., Vom Stein T., Klankermayer P. J., Leitner P. W.. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst[J]. Angew. Chem. Int. Ed., 2012,51(51):7499-7502.
Omae I.. Aspects of carbon dioxide utilization[J]. Catal. Today, 2006,115(1-4):33-52. doi: 10.1016/j.cattod.2006.02.024
Yamaguchi K., Ebitani K., Yoshida T., Yoshida H., Kaneda K.. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc., 1999,121(18):4526-4527. doi: 10.1021/ja9902165
Inoue S., Koinuma H., Tsuruta T.. Copolymerization of carbon dioxide and epoxide[J]. J. Polym. Sci., Part B: Polym. Lett., 1969,7(4):287-292. doi: 10.1002/pol.1969.110070408
Coates G. W., Moore D. R.. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism[J]. Angew. Chem. Int. Ed., 2004,43(48):6618-6639. doi: 10.1002/(ISSN)1521-3773
Lu X. B., Ren W. M., Wu G. P.. CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control[J]. Acc. Chem. Res., 2012,45(10):1721-1735. doi: 10.1021/ar300035z
Darensbourg D. J., Wilson S. J.. What's new with CO2? Recent advances in its copolymerization with oxiranes[J]. Green Chem., 2012,14(10):2665-2671. doi: 10.1039/c2gc35928f
Klaus S., Lehenmeier M. W., Anderson C. E., Rieger B.. Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms[J]. Coord. Chem. Rev., 2011,255(13):1460-1479.
Darensbourg D. J., Holtcamp M. W.. Catalysts for the reactions of epoxides and carbon dioxide[J]. Coord. Chem. Rev., 1996,153(95):155-174.
Bruckmeier C., Lehenmeier M. W., Reichardt R., Vagin S., Rieger B.. Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones[J]. Organometallics, 2010,29(10):2199-2202. doi: 10.1021/om100060y
Sakakura T., Choi J. C., Yasuda H.. Transformation of carbon dioxide[J]. Chem. Rev., 2007,107(36):2365-2387.
Nakano R., Ito S., Nozaki K.. Copolymerization of carbon dioxide and butadiene via a lactone intermediate[J]. Nat. Chem., 2014,6(4):325-331. doi: 10.1038/nchem.1882
Dibenedetto A., Angelini A., Stufano P.. Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis[J]. J. Chem. Technol. Biotechnol., 2014,89(3):334-353. doi: 10.1002/jctb.2014.89.issue-3
von der Assen N., Bardow A.. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study[J]. Green Chem., 2014,16(6):3272-3280. doi: 10.1039/C4GC00513A
Kissling S., Lehenmeier M. W., Altenbuchner P. T., Kronast A., Reiter M., Deglmann P., Seemann U. B., Rieger B.. Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO2[J]. Chem. Commun., 2015,51(22):4579-4582. doi: 10.1039/C5CC00784D
Lindskog S.. Structure and mechanism of carbonic anhydrase[J]. Pharmacol. Ther., 1997,74(1):1-20. doi: 10.1016/S0163-7258(96)00198-2
Qin Y. S., Sheng X. S., Liu S. J., Ren G. J., Wang X. H., Wang F. S.. Recent advances in carbon dioxide based copolymers[J]. J. CO2 Util., 2015,11:3-9. doi: 10.1016/j.jcou.2014.10.003
Kuran W., Pasynkiewicz S., Skupińska J., Rokicki A.. Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts[J]. Makroml. Chem., 1976,177(1):11-20. doi: 10.1002/macp.1976.021770102
Góarecki P., Kuran W., Góarecki P., Kuran W.. Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide: activity in copolymerization and copolymer destruction processes[J]. J. Polym. Sci., Part C: Polym. Lett., 1985,23(6):299-304. doi: 10.1002/pol.1985.130230603
Soga K., Imai E., Hattori I.. Alternating copolymerization of CO2 and propylene oxide with the catalysts prepared from Zn(OH)2 and various dicarboxylic acids[J]. Polym. J., 1981,13(4):407-410. doi: 10.1295/polymj.13.407
Luinstra G. A.. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: Catalysis and material properties[J]. Polym. Rev., 2008,48(1):192-219. doi: 10.1080/15583720701834240
Ree M., Bae J. Y., Jung J. H., Shin T. J.. A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide[J]. J. Polym. Sci., Part A: Polym. Chem., 1999,37(12)876.
Eberhardt R., Allmendinger M., Zintl M., Troll C., Luinstra G. A., Rieger B.. New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: Activity enhancement through Zn(Ⅱ)-ethylsulfinate initiating groups[J]. Macromol. Chem. Phys., 2004,205(1):42-47. doi: 10.1002/(ISSN)1521-3935
Meng Y. Z., Du L. C., Tiong S. C., Zhu Q., Hay A. S.. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer[J]. J. Polym. Sci., Part A: Polym. Chem., 2002,40(21):3579-3591. doi: 10.1002/(ISSN)1099-0518
Chen X., Shen Z., Zhang Y.. New catalytic systems for the fixation of carbon dioxide[J]. 1. Copolymerization of carbon dioxide and propylene oxide with new rare-earth catalysts-RE(P204)3-Al(i-Bu)3-R(OH)n. Macromolecules, 1991,24(19):5305-5308.
Liu B., Zhao X., Wang X., Wang F.. Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: The role of rare-earth compound in the catalytic system[J]. J. Polym. Sci., Part A: Polym. Chem., 2001,39(16):2751-2754. doi: 10.1002/(ISSN)1099-0518
Kruper, W. J., Swart, D. J., 1985, U. S. Pat., 4, 500, 704
Chen S., Hua Z. J., Fang Z., Qi G. R.. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate (Ⅲ)-based coordination catalyst[J]. Polymer, 2004,45(19):6519-6524. doi: 10.1016/j.polymer.2004.07.044
Finkelmann H., Ringsdorf H., Wendorff J. H.. Model considerations and examples of enantiotropic liquid crystalline polymers[J]. Polyreactions in ordered systems, 14. Makroml. Chem., 1978,179(1):273-276.
Darensbourg D. J., Holtcamp M. W.. Catalytic activity of zinc(Ⅱ) phenoxides which possess readily accessible coordination sites[J]. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules, 1995,28(22):7577-7579.
Cheng M., Lobkovsky E. B., Coates G. W.. Catalytic reactions involving C1 feedstocks: New high-activity Zn(Ⅱ)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides[J]. J. Am. Chem. Soc., 1998,120(42):11018-11019. doi: 10.1021/ja982601k
Lee B. Y., Kwon H. Y., Lee S. Y., Na S. J., Han S., Yun H., Lee H., Park Y. W.. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization[J]. J. Am. Chem. Soc., 2005,127(9):3031-3037. doi: 10.1021/ja0435135
Sugimoto H., Ohtsuka H., Inoue S.. Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum schiff base-ammonium salt system[J]. J. Polym. Sci., Part A: Polym. Chem., 2005,43(18):4172-4186. doi: 10.1002/(ISSN)1099-0518
Lu X. B., Wang Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions.[J]. Angew. Chem. Int. Ed., 2004,43(27):3574-3577. doi: 10.1002/(ISSN)1521-3773
Qin Z., Thomas C. M., Lee S., Coates G. W.. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis[J]. Angew. Chem. Int. Ed., 2003,42(44):5484-5487. doi: 10.1002/(ISSN)1521-3773
Darensbourg D. J., Yarbrough J. C.. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. J. Am. Chem. Soc., 2002,124(22):6335-6342. doi: 10.1021/ja012714v
Sun X. K., Chen S., Zhang X. H., Qi G. R.. Double metal cyanide complex catalyst and its catalysis for epoxides-involved polymerization[J]. Prog. Chem., 2012,24(9):1776-1784.
Sun X. K., Zhang X. H., Wei R. J., Du B. Y., Wang Q., Fan Z. Q., Qi G. R.. Mechanistic insight into initiation and chain transfer reaction of CO2/cyclohexene oxide copolymerization catalyzed by zinc-cobalt double metal cyanide complex catalysts[J]. J. Polym. Sci., Part A: Polym. Chem., 2012,50(14):2924-2934. doi: 10.1002/pola.26074
Luo M., Zhang X. H., Du B. Y., Wang Q., Fan Z. Q.. Regioselective and alternating copolymerization of carbonyl sulfide with racemic propylene oxide[J]. Macromolecules, 2013,46(15):5899-5904. doi: 10.1021/ma401114m
Luo M., Zhang X. H., Du B. Y., Wang Q., Fan Z. Q.. Well-defined high refractive index poly(monothiocarbonate) with tunable abbe's numbers and glass-transition temperatures via terpolymerization[J]. Polym. Chem., 2015,6(27):4978-4983. doi: 10.1039/C5PY00773A
Luo M., Zhang X. H., Darensbourg D. J.. An examination of the steric and electronic effects in the copolymerization of carbonyl sulfide and styrene oxide[J]. Macromolecules, 2015,48(17):6057-6062. doi: 10.1021/acs.macromol.5b01427
Luo M., Zhang X. H., Darensbourg D. J.. Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether[J]. Polym. Chem., 2015,6(39):6955-6958. doi: 10.1039/C5PY01197C
Zhang X. H., Hua Z. J., Chen S., Liu F., Sun X. K., Qi G. R.. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide[J]. Appl. Catal., A, 2007,325(1):91-98. doi: 10.1016/j.apcata.2007.03.014
Sun X. K., Zhang X. H., Liu F., Chen S., Du B. Y., Wang Q., Fan Z. Q., Qi G. R.. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co(Ⅲ) double metal cyanide complex hybrid catalysts with a nanolamellar structure[J]. J. Polym. Sci., Part A: Polym. Chem., 2008,46(9):3128-3139. doi: 10.1002/(ISSN)1099-0518
Klaus S., Lehenmeier M. W., Herdtweck E., Deglmann P., Ott A. K., Rieger B.. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization[J]. J. Am. Chem. Soc., 2011,133(33):13151-13161. doi: 10.1021/ja204481w
Kim I., Yi M. J., Byun S. H., Park D. W., Kim B. U., Ha C. S.. Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex[J]. Macromol. Symp., 2005,224(1):181-192. doi: 10.1002/(ISSN)1521-3900
Zhang X. H., Chen S., Wu X. M., Sun X. K., Liu F., Qi G. R.. Highly active double metal cyanide complexes: Effect of central metal and ligand on reaction of epoxide/CO2[J]. Chin. Chem. Lett., 2007,18(7):887-890. doi: 10.1016/j.cclet.2007.05.017
Zhang X. H., Wei R. J., Sun X. K., Zhang J. F., Du B. Y., Fan Z. Q., Qi G. R.. Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures[J]. Polymer, 2011,52(24):5494-5502. doi: 10.1016/j.polymer.2011.09.040
Wei R. J., Zhang Y. Y., Zhang X. H., Du B. Y., Fan Z. Q.. Regio-selective synthesis of polyepichlorohydrin diol using Zn-Co(Ⅲ) double metal cyanide complex[J]. RSC Adv., 2014,4(42):21765-21771. doi: 10.1039/C4RA02394C
Kuyper J., Boxhoorn G.. Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves[J]. J. Catal., 1987,105(1):163-174. doi: 10.1016/0021-9517(87)90016-9
Zhang X. H., Wei R. J., Zhang Y. Y., Du B. Y., Fan Z. Q.. Carbon dioxide/epoxide copolymerization via a nanosized zinc-cobalt(Ⅲ) double metal cyanide complex: Substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures[J]. Macromolecules, 2015,48(3):536-544. doi: 10.1021/ma5023742
Chisholm M. H., Navarro-Llobet D., Zhou Z.. Poly(propylene carbonate)[J]. 1. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst. Macromolecules, 2002,35(17):6494-6504.
Trott G., Saini P. K., Williams C. K.. Catalysts for CO2/epoxide ring-opening copolymerization[J]. Phil. Trans. R. Soc. A, 2016,374(2061).
Darensbourg D. J., Mackiewicz R. M., Phelps A. L., Billodeaux D. R.. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes[J]. Acc. Chem. Res., 2004,37(11):836-844. doi: 10.1021/ar030240u
Rao D. Y., Li B., Zhang R., Wang H., Lu X. B.. Binding of 4-(N, N-dimethylamino)pyridine to salen-and salan-Cr(Ⅲ) cations: A mechanistic understanding on the difference in their catalytic activity for CO2/epoxide copolymerization[J]. Inorg. Chem., 2009,48(7):2830-2836. doi: 10.1021/ic802384x
Darensbourg D. J., Mackiewicz R. M.. Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes[J]. J. Am. Chem. Soc., 2005,127(40):14026-14038. doi: 10.1021/ja053544f
Darensbourg D. J.. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2[J]. Chem. Rev., 2007,107(6):2388-2410. doi: 10.1021/cr068363q
Lu X. B., Darensbourg D. J.. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates[J]. Chem. Soc. Rev., 2012,41(4):1462-1484. doi: 10.1039/C1CS15142H
Childers M. I., Longo J. M., van Zee N. J., Lapointe A. M., Coates G. W.. Stereoselective epoxide polymerization and copolymerization[J]. Chem. Rev., 2014,114(16):8129-8152. doi: 10.1021/cr400725x
Darensbourg D. J., Mackiewicz R. M., Rodgers J. L., Fang C. C., Billodeaux D. R., Reibenspies J. H.. Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(Ⅲ) salen complexes and N-methylimidazole: effects of varying salen ligand substituents and relative cocatalyst loading[J]. Inorg. Chem., 2004,43(19):6024-6034. doi: 10.1021/ic049182e
Nakano K., Kamada T., Nozaki K.. Selective formation of polycarbonate over cyclic carbonate: Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(Ⅲ) complex with a piperidinium end-capping arm[J]. Angew. Chem. Int. Ed., 2006,118(43):7432-7435. doi: 10.1002/(ISSN)1521-3757
Kember M. R., White A. J. P., Williams C. K.. Highly active di-and trimetallic cobalt catalysts for the copolymerization of CHO and CO2 at atmospheric pressure[J]. Macromolecules, 2010,43(5):2291-2298. doi: 10.1021/ma902582m
Qin Y., Wang X., Zhang S., Zhao X., Wang F.. Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight[J]. J. Polym. Sci., Part A: Polym. Chem., 2008,46(17):5959-5967. doi: 10.1002/pola.v46:17
Na S. J., Sujith S., Cyriac A., Kim B. E., Yoo J., Kang Y. K., Han S. J., Lee C., Lee B. Y.. Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization: a salen-cobaltate complex of an unusual binding mode[J]. Inorg. Chem., 2009,48(21):10455-10465. doi: 10.1021/ic901584u
Klaus S., Vagin S. I., Lehenmeier M. W., Deglmann P., Brym A. K., Rieger B.. Kinetic and mechanistic investigation of mononuclear and flexibly linked dinuclear complexes for copolymerization of CO2 and epoxides[J]. Macromolecules, 2011,44(24):9508-9516. doi: 10.1021/ma201387f
Salmeia K. A., Vagin S., Anderson C. E., Rieger B.. Poly(propylene carbonate): Insight into the microstructure and enantioselective ring-opening mechanism[J]. Macromolecules, 2012,45(21):8604-8613. doi: 10.1021/ma301916r
Kupriyanova E., Pronina N., Los D.. Carbonic anhydrase-a universal enzyme of the carbon-based life[J]. Photosynthetica, 2017,55(1):3-19. doi: 10.1007/s11099-017-0685-4
Supuran, C. T., "Carbonic anhydrase: its inhibitors and activators", CRC Press, Boca Raton, 2004, p. 1
Supuran C. T.. Structure and function of carbonic anhydrases[J]. Biochem. J., 2016,473(14)2023. doi: 10.1042/BCJ20160115
Eriksson A. E., Jones T. A., Liljas A.. Refined structure of human carbonic anhydrase Ⅱ at 2[J]. 0 Å resolution. Proteins Struct. Funct. Bioinf., 1988,4(4):274-282. doi: 10.1002/(ISSN)1097-0134
Bräuer M., Pérez-Lustres J. L., Weston J., Anders E.. Quantitative reactivity model for the hydration of carbon dioxide by biomimetic zinc complexes[J]. Inorg. Chem., 2002,41(6):1454-1463. doi: 10.1021/ic0010510
Vallee B. L., Auld D. S.. Zinc: Biological functions and coordination motifs[J]. Acc. Chem. Res., 1993,26(10):543-551. doi: 10.1021/ar00034a005
Boone C. D., Pinard M., McKenna R., Silverman D.. "Catalytic mechanism of α-class carbonic anhydrases: CO2 Hydration and Proton Transfer"[J]. Springer Netherlands, Dordrecht, 2014p. 31.
Tripp B. C., Smith K., Ferry J. G.. Carbonic anhydrase: New insights for an ancient enzyme[J]. J. Biol. Chem., 2001,276(52):48615-48618. doi: 10.1074/jbc.R100045200
Xu Y., Feng L., Jeffrey P. D., Shi Y., Morel F. M.. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms[J]. Nature, 2008,452(7183):56-61. doi: 10.1038/nature06636
Zimmerman S. A., Tomb J. F., Ferry J. G.. Characterization of camh from methanosarcina thermophila, founding member of a subclass of the γ class of carbonic anhydrases[J]. J. Bacteriol., 2010,192(5):1353-1360. doi: 10.1128/JB.01164-09
Iverson T. M., Alber B. E., Kisker C., Ferry J. G., Rees D. C.. A closer look at the active site of gamma-class carbonic anhydrases: High-resolution crystallographic studies of the carbonic anhydrase from methanosarcina thermophila[J]. Biochemistry, 2000,39(31):9222-9231. doi: 10.1021/bi000204s
Darensbourg D. J., Niezgoda S. A., Holtcamp M. W., Draper J. D., Reibenspies , J. H.. Syntheses, structures, and binding constants of cyclic ether and thioether adducts of soluble cadmium(Ⅱ) carboxylates. Intermediates in the homopolymerization of oxiranes and thiiranes and in carbon dioxide coupling processes.[J]. Inorg. Chem., 1997,36(11)2426. doi: 10.1021/ic9701120
Buchard A., Kember M. R., Sandeman K. G., Williams C. K.. A bimetallic iron(Ⅲ) catalyst for CO2/epoxide coupling[J]. Chem. Commun., 2011,47(1):212-214. doi: 10.1039/C0CC02205E
Schenk S., Notni J., Kohn U., Wermann K., Anders E.. Carbon dioxide and related heterocumulenes at zinc and lithium cations: Bioinspired reactions and principles[J]. Dalton Trans., 2006(35):4191-4206. doi: 10.1039/B608534B
Brauer M., Anders E., Sinnecker S., Koch W., Rombach M., Brombacher H., Vahrenkamp H.. The TpZn-OH/CS2 reaction: Theoretical and preparative visualization of an essential bioinorganic reaction path[J]. Chem. Commun., 2000(8):647-648. doi: 10.1039/b001149p
Rombach M., Vahrenkamp H.. Pyrazolylborate-zinc-hydrosulfide complexes and their reactions[J]. Inorg. Chem., 2001,40(24):6144-6150. doi: 10.1021/ic010510+
Zhang X. H., Liu F., Sun X. K., Chen S., Du B. Y., Qi G. R., Wan K. M.. Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex[J]. Macromolecules, 2008,41(5):1587-1590. doi: 10.1021/ma702290g
Zhang X. H., Huang Y. J., Liu F., Sun X. K., Fan Z. Q., Qi G. R.. Copolymerization of carbon disulfide and cyclohexene oxide with a double-metal cyanide complex catalyst[J]. Acta Polymerica Sinica (in Chinese), 2009(6):546-552.
Darensbourg D. J., Andreatta J. R., Jungman M. J., Reibenspies J. H.. Investigations into the coupling of cyclohexene oxide and carbon disulfide catalyzed by (salen)CrCl[J]. Selectivity for the production of copolymers vs. Cyclic thiocarbonates. Dalton Trans., 2009(41):8891-8899.
Darensbourg D. J., Wilson S. J., Yeung A. D.. Oxygen/sulfur scrambling during the copolymerization of cyclopentene oxide and carbon disulfide: Selectivity for copolymer versus cyclic thiocarbonates[J]. Macromolecules, 2013,46(20):8102-8110. doi: 10.1021/ma4015438
Luo M., Zhang X. H., Darensbourg D. J.. An investigation of the pathways for oxygen/sulfur scramblings during the copolymerization of carbon disulfide and oxetane[J]. Macromolecules, 2015,48(16):5526-5532. doi: 10.1021/acs.macromol.5b01251
Luo M., Zhang X. H., Darensbourg D. J.. Synthesis of cyclic monothiocarbonates via the coupling reaction of carbonyl sulfide (COS) with epoxides[J]. Catal. Sci. Technol., 2015,6(1):188-192.
Luo M., Zhang X. H., Darensbourg D. J.. Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides[J]. Acc. Chem. Res., 2016,49(10):2209-2219. doi: 10.1021/acs.accounts.6b00345
Darensbourg D. J., Moncada A. I., Choi W., Reibenspies J. H.. Mechanistic studies of the copolymerization reaction of oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (salen)CrX complexes[J]. J. Am. Chem. Soc., 2008,130(20):6523-6533. doi: 10.1021/ja800302c
Lu X. B., Shi L., Wang Y. M., Zhang R., Zhang Y. J., Peng X. J., Zhang Z. C., Li B.. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: Polymer selectivity, enantioselectivity, and stereochemistry control[J]. J. Am. Chem. Soc., 2006,128(5):1664-1674. doi: 10.1021/ja056383o
Zhang D., Boopathi S. K., Hadjichristidis N., Gnanou Y., Feng X.. Metal-free alternating copolymerization of CO2 with epoxides: Fulfilling "gre]en" synthesis and activity[J]. J. Am. Chem. Soc., 2016,138(35):11117-11120. doi: 10.1021/jacs.6b06679
Wei R. J., Zhang X. H., Du B. Y., Sun X. K., Fan Z. Q., Qi G. R.. Highly regioselective and alternating copolymerization of racemic styrene oxide and carbon dioxide via heterogeneous double metal cyanide complex catalyst[J]. Macromolecules, 2013,46(9):3693-3697. doi: 10.1021/ma4004709
Inoue S.. Immortal polymerization: The outset, development, and application[J]. J. Polym. Sci., Part A: Polym. Chem., 2000,38(16):2861-2871. doi: 10.1002/(ISSN)1099-0518
Hirano T., Inoue S., Tsuruta T.. Stereochemistry of the copolymerization of carbon dioxide with optically active phenylepoxyethane[J]. Makroml. Chem., 1975,176(7):1913-1917. doi: 10.1002/macp.1975.021760701
Eger W. A., Presselt M., Jahn B. O., Schmitt M., Popp J., Anders E.. Metal-mediated reaction modeled on nature: The activation of isothiocyanates initiated by zinc thiolate complexes[J]. Inorg. Chem., 2011,50(8):3223-3233. doi: 10.1021/ic101464j
Luo M., Li Y., Zhang Y. Y., Zhang X. H.. Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis[J]. Polymer, 2016,82:406-431. doi: 10.1016/j.polymer.2015.11.011
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353