Citation: Xiang-Yang Song, Qiong Ma, Hao-Bo Yuan, Zheng-Guo Cai. Synthesis of Hydroxy-functionalized Ultrahigh Molecular Weight Polyethylene Using Fluorenylamidotitanium Complex[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 171-175. doi: 10.1007/s10118-018-2046-6 shu

Synthesis of Hydroxy-functionalized Ultrahigh Molecular Weight Polyethylene Using Fluorenylamidotitanium Complex

  • Corresponding author: Zheng-Guo Cai, caizg@dhu.edu.cn
  • Received Date: 25 August 2017
    Accepted Date: 21 September 2017
    Available Online: 16 November 2017

  • Copolymerizations of ethylene and 1-dodecene were conducted with a series of ansa-fluorenylamidodimethyltitanium complexes, [t-BuNSiMe2Flu]TiMe2 (1a), [t-BuNSiMe2(2, 7-tBu2Flu)]TiMe2 (1b), and[(1-adamantyl)NSiMe2(2, 7-tBu2Flu)]TiMe2 (1c) activated by modified methylaluminoxane. The activity increased by the introduction of the alkyl groups on the fluorenyl and amido ligands, and 1c produced the highest molecular weight copolymers. Complex 1c also promoted copolymerization of ethylene and iBu3Al protected 10-undecen-1-ol with high activity (~2000 kg·mol-1·h-1), affording hydroxy-functionalized ultrahigh molecular weight polyethylene. The hydroxy content of the copolymers obtained was controllable by changing comonomer feed ratio. The introduction of a small amount of hydroxy group can alter the surface properties of polyethylene.
  • 加载中
    1. [1]

      Kurtz, S. M. The UHMWPE Handbook, "Ultra high molecular weight polyethylene in total joint replacement", Elsevier Academic Press, New York, 2004.

    2. [2]

      Dong J. Y., Hu Y.. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry[J]. Coord. Chem. Rev., 2006,250(1-2):47-65. doi: 10.1016/j.ccr.2005.05.008

    3. [3]

      Franssen N. M. G., Reek J. N. H., Bruin B. D.. Synthesis of functional 'polyolefins': state of the art and remaining challenges[J]. Chem. Soc. Rev., 2013,42(13):5809-5832. doi: 10.1039/c3cs60032g

    4. [4]

      Iizuka Y., Sugiyama J., Hagihara H.. Unexpected mechanical properties of functionalized polypropylene: tensile test, charpy impact tensile test, DSC, and WAXD analysis of poly(5-hexen-1-ol-co-propylene)[J]. Macromolecules, 2009,42(7):2321-2323. doi: 10.1021/ma802860b

    5. [5]

      Hagihara H., Ito K., Kimata S.. Comprehensive study of altered amorphous structure in functionalized polypropylenes exhibiting high tensile strength[J]. Macromolecules, 2013,46(11):4432-4437. doi: 10.1021/ma4003837

    6. [6]

      Boffa L. S., Novak B. M.. Copolymerization of polar monomers with olefins using transition-metal complexes[J]. Chem. Rev., 2000,100(4):1479-1493. doi: 10.1021/cr990251u

    7. [7]

      Chen E. Y. X.. Coordination polymerization of polar vinyl monomers by single-site metal catalysts[J]. Chem. Rev., 2009,109(11):5157-5214. doi: 10.1021/cr9000258

    8. [8]

      Nakamura A., Ito S., Nozaki K.. Coordination-insertion copolymerization of fundamental polar monomers[J]. Chem. Rev., 2009,109(11):5215-5244. doi: 10.1021/cr900079r

    9. [9]

      Carrow B. P., Nozaki K.. Transition-metal-catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights[J]. Macromolecules, 2014,47(8):2541-2555. doi: 10.1021/ma500034g

    10. [10]

      Aaltonen P., Lofgren B.. Synthesis of functional polyethylenes with soluble metallocene/methylaluminoxane catalyst[J]. Macromolecules, 1995,28(15):5353-5357. doi: 10.1021/ma00119a027

    11. [11]

      Aaltonen P., Lofgren B.. Functionalization of polyethylenes via metallocene/methylaluminoxane catalyst[J]. Eur. Polym. J., 1997,33(8):1187-1190. doi: 10.1016/S0014-3057(97)00011-6

    12. [12]

      Hakala K., Lofgren B., Helaja T.. Copolymerizations of oxygen-functionalized olefins with propylene using metallocene/methylaluminoxane catalyst[J]. Eur. Polym. J., 1998,34(8):1093-1097. doi: 10.1016/S0014-3057(97)00227-9

    13. [13]

      Hakala K., Helaja T., Lofgren B.. Metallocene/ methylaluminoxane-catalyzed copolymerizations of oxygen-functionalized long-chain olefins with ethylene[J]. J. Polym. Sci., Part A: Polym. Chem., 2000,38(11):1966-1971. doi: 10.1002/(ISSN)1099-0518

    14. [14]

      Marques M. M., Correia S. G., Ascenso J. R., Ribeiro A. F. G., Gomes P. T., Dias A. R., Foster P., Rausch M. D., Chien J. C. W.. Polymerization with TMA-protected polar vinyl comonomers[J]. I. catalyzed by group 4 metal complexes with eta(5)-type ligands. J. Polym. Sci., Part A: Polym. Chem., 1999,37(14):2457-2469.  

    15. [15]

      Hagihara H., Murata M., Uozumi T.. Alternating copolymerization of ethylene and 5-hexen-1-ol with [ethylene(1-indenyl)(9-fluorenyl)]-zirconium dichloride/ methylaluminoxane as the catalyst[J]. Macromol. Rapid Commun., 2001,22(5):353-357. doi: 10.1002/(ISSN)1521-3927

    16. [16]

      Hagihara H., Tsuchihara K., Takeuchi K., Murata M., Ozaki H., Shiono T.. Copolymerization of ethylene or propylene with alpha-olefins containing hydroxyl groups with zirconocene/methylaluminoxane catalyst[J]. J. Polym. Sci., Part A: Polym. Chem., 2004,42(1):52-58. doi: 10.1002/(ISSN)1099-0518

    17. [17]

      Imuta J., Kashiwa N., Toda Y.. Catalytic regioselective introduction of allyl alcohol into the nonpolar polyolefins: development of one-pot synthesis of hydroxyl-capped polyolefins mediated by a new metallocene IF catalyst[J]. J. Am. Chem. Soc., 2002,124(7):1176-1177. doi: 10.1021/ja0174377

    18. [18]

      Kawahara N., Kojoh S., Matsuo S., Kaneko H., Matsugi T., Kashiwa N.. Investigation of insertion reaction of 10-undecen-1-ol protected with alkylaluminum in En(Ind)(2)ZrCl2/MAO catalyst system[J]. J. Mol. Catal. A: Chem., 2005,241(1-2):156-161. doi: 10.1016/j.molcata.2005.07.010

    19. [19]

      Zhang X., Chen S., Li H., Zhang Z., Lu Y., Wu C., Hu Y.. Highly active copolymerization of ethylene with 10-undecen-1-ol using phenoxy-based zirconium/methylaluminoxane catalysts[J]. J. Polym. Sci., Part A: Polym. Chem., 2005,43(23):5944-5952. doi: 10.1002/(ISSN)1099-0518

    20. [20]

      Zhang X., Chen S., Li H., Zhang Z., Lu Y., Wu C., Hu Y.. Copolymerizations of ethylene and polar comonomers with bis(phenoxyketimine) group Ⅳ complexes: effects of the central metal properties[J]. J. Polym. Sci., Part A: Polym. Chem., 2007,45(1):59-68. doi: 10.1002/(ISSN)1099-0518

    21. [21]

      Huang Y., Yang K., Dong J. Y.. Copolymerization of ethylene and 10-undecen-1-ol using a montmorillonite-intercalated metallocene catalyst: synthesis of polyethylene/montmorillonite nanocomposites with enhanced structural stability[J]. Macromol. Rapid Commun., 2006,27(15):1278-1283. doi: 10.1002/(ISSN)1521-3927

    22. [22]

      Zuo W., Zhang M., Sun W. H.. Imino-indolate half-titanocene chlorides: synthesis and their ethylene (co-)polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 2009,47(2):357-372. doi: 10.1002/pola.v47:2

    23. [23]

      Fernandes M., Kaminsky W.. Copolymerization of ethylene with 2, 7-octadienyl methyl ether in the presence of metallocene and nickel diimine catalysts[J]. Macromol. Chem. Phys., 2009,210(7):585-593. doi: 10.1002/macp.v210:7

    24. [24]

      Terao H., Ishii S., Mitani M., Tanaka H., Fujita T.. Ethylene/polar monomer copolymerization behavior of bis(phenoxy-imine)Ti complexes: formation of polar monomer copolymers[J]. J. Am. Chem. Soc., 2008,130(52):17636-17637. doi: 10.1021/ja8060479

    25. [25]

      Hong M., Wang Y. X., Mu H. L., Li Y. S.. Efficient synthesis of hydroxylated polyethylene via copolymerization of ethylene with 5-norbornene-2-methanol using bis(beta-enaminoketonato) titanium catalysts[J]. Organometallics, 2011,30(17):4678-4686. doi: 10.1021/om200526n

    26. [26]

      Yang X. H., Liu C. R., Wang C., Sun X. L., Guo Y. H., Wang X. K., Wang Z., Xie Z., Tang Y.. [(O-NSR)]TiCl3-catalyzed copolymerization of ethylene with functionalized olefins[J]. Angew. Chem. Int. Ed., 2009,48(43):8099-8102. doi: 10.1002/anie.v48:43

    27. [27]

      Chen Z., Li J. F., Tal W. J., Sun X. J., Yang X. H., Tang Y.. Copolymerization of ethylene with functionalized olefins by[J]. Macromolecules, 2013,46(7):2870-2875. doi: 10.1021/ma400283p

    28. [28]

      Shiono T.. Living polymerization of olefins with ansa-dimethylsilylene(fluorenyl)(amido) dimethyltitanium-based catalysts[J]. Polym. J., 2011,43(4):331-351. doi: 10.1038/pj.2011.13

    29. [29]

      Cai Z., Su H., Shiono T.. Precise synthesis of olefin block copolymers using a syndiospecific living polymerization system[J]. Chinese J. Polym. Sci., 2013,31(4):541-549. doi: 10.1007/s10118-013-1250-7

    30. [30]

      Sun Y., Xu B., Shiono T., Cai Z.. Highly active ansa-(fluorenyl)(amido)titanium-based catalysts with low load of methylaluminoxane for syndiotactic-specific living polymerization of propylene[J]. Organometallics, 2017. doi: 10.1021/acs.organomet.7b00415

    31. [31]

      Cai Z., Ikeda T., Akita M., Shiono T.. Substituent effects of tert-butyl groups on fluorenyl ligand in syndiospecific living polymerization of propylene with ansa-fluorenylamidodimethyltitanium complex[J]. Macromolecules, 2005,38(20):8135-8139. doi: 10.1021/ma050898i

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    4. [4]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    5. [5]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    6. [6]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    7. [7]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    8. [8]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    9. [9]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    10. [10]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    11. [11]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    14. [14]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    15. [15]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    16. [16]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    17. [17]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    18. [18]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    19. [19]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    20. [20]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

Metrics
  • PDF Downloads(0)
  • Abstract views(769)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return