Citation: Tong Shi, Quan-De Zheng, Wei-Wei Zuo, Shao-Feng Liu, Zhi-Bo Li. Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 149-156. doi: 10.1007/s10118-018-2039-5 shu

Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide

  • Two types of bifunctional bis(salicylaldimine) ligands (syn-L and anti-L) were designed and synthesized to support bimetallic aluminum complexes. Owing to the rigid anthracene skeleton, syn-L and anti-L successfully locked two Al centers in close proximity (syn-Al2) and far apart (anti-Al2), respectively. The distance between two Al centers in syn-Al2 was defined by X-ray diffraction as 6.665 Å, which is far shorter than that in anti-Al2. In the presence of stoichiometrical BnOH, syn-Al2 and anti-Al2 were both efficient for ring-opening polymerization (ROP) of rac-LA with the former being more active. In the presence of excess BnOH, syn-Al2 showed an efficient and immortal feature, consistent with high conversions, matched Mns, narrow molecular weight distributions and end group fidelity, while anti-Al2 had a much lower activity or even became entirely inactive due to rapid decomposition, indicated by in situ 1H-NMR experiments of Al complexes with BnOH.
  • 加载中
    1. [1]

      Buchwalter P., Rosé J., Braunstein P.. Multimetallic catalysis based on heterometallic complexes and clusters[J]. Chem. Rev., 2015,115(1):28-126. doi: 10.1021/cr500208k

    2. [2]

      Hetterscheid D. G. H., Chikkali S. H., de Bruin B., Reek J. N. H.. Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins[J]. ChemCatChem, 2013,5(10):2785-2793. doi: 10.1002/cctc.v5.10

    3. [3]

      Sone T., Yamaguchi A., Matsunaga S., Shibasaki M.. Catalytic asymmetric synthesis of 2, 2-disubstituted terminal epoxides via dimethyloxosulfonium methylide addition to ketones[J]. J. Am. Chem. Soc., 2008,130(31):10078-10079. doi: 10.1021/ja803864p

    4. [4]

      Matsunaga S., Shibasaki M.. Recent advances in cooperative bimetallic asymmetric catalysis:dinuclear Schiff base complexes[J]. Chem. Commun., 2014,50(9):1044-1057. doi: 10.1039/C3CC47587E

    5. [5]

      Huang H. H., Zhang C. H., Qin Y. W., Niu H., Dong J. Y.. Synthesis of styryl-capped polypropylene via metallocenemediated coordination polymerization:apply to polypropylene macromolecular engineering[J]. Chinese J. Polym. Sci., 2013,31(4):550-562. doi: 10.1007/s10118-013-1261-4

    6. [6]

      Wang J., Li H. M., Guo J. P., Huang Q. G., Yi J. J., Liu Y. F., Gao K. J., Yang W. T.. Coral-shaped and core-shell structure copolyethylene nanocomposites particles prepared by in situ coordination polymerization[J]. Chinese J. Polym. Sci., 2015,33(12):1650-1660. doi: 10.1007/s10118-015-1719-7

    7. [7]

      Delferro M., Marks T. J.. Multinuclear olefin polymerization catalysts[J]. Chem. Rev., 2011,111(3):2450-2485. doi: 10.1021/cr1003634

    8. [8]

      Zhang J., Liu S., Zuo W., Ye H., Li Z.. Synthesis of dinuclear aluminum complexes bearing bis-phenolate ligand and application in ring-opening polymerization of ε-caprolactone[J]. New J. Chem., 2017,41(6):2358-2363. doi: 10.1039/C6NJ03818B

    9. [9]

      Xiang S., Shao J., Li G., Bian X. C., Feng L. D., Chen X. S., Liu F. Q., Huang S. Y.. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide)[J]. Chinese J. Polym. Sci., 2016,34(1):69-76. doi: 10.1007/s10118-016-1727-2

    10. [10]

      Huang H. C., Wang B., Zhang Y. P., Li Y. S.. Bimetallic aluminum complexes with cyclic β-ketiminato ligands:the cooperative effect improves their capability in polymerization of lactide and ε-caprolactone[J]. Polym. Chem., 2016,7(37):5819-5827. doi: 10.1039/C6PY01092J

    11. [11]

      Wu L. Y., Fan D. D., Lu X. Q., Lu R.. Ring-opening copolymerization of cyclohexene oxide and maleic anhydride catalyzed by mononuclear[Zn(L)(H2O)] or binuclear[Zn2(L)(OAc)2 (H2O)] complex based on the Salen-type Schiff-base ligand[J]. Chinese J. Polym. Sci., 2014,32(6):768-777. doi: 10.1007/s10118-014-1425-x

    12. [12]

      Sun S., Nie K., Tan Y., Zhao B., Zhang Y., Shen Q., Yao Y.. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides[J]. Dalton Trans., 2013,42(8):2870-2878. doi: 10.1039/C2DT31597A

    13. [13]

      Wang Y., Ma H.. Exploitation of dinuclear salan aluminum complexes for versatile copolymerization of ε-caprolactone and L-lactide[J]. Chem. Commun., 2012,48(53):6729-6731. doi: 10.1039/c2cc31716h

    14. [14]

      Saha T. K., Ramkumar V., Chakraborty D.. Salen complexes of zirconium and hafnium:synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides[J]. Inorg. Chem., 2011,50(7):2720-2722. doi: 10.1021/ic1025262

    15. [15]

      Li W., Wu W., Wang Y., Yao Y., Zhang Y., Shen Q.. Bimetallic aluminum alkyl complexes as highly active initiators for the polymerization of ε-caprolactone[J]. Dalton Trans., 2011,40(43):11378-11381. doi: 10.1039/c1dt11380a

    16. [16]

      Yao W., Mu Y., Gao A., Gao W., Ye L.. Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone[J]. Dalton Trans., 2008:3199-3206.

    17. [17]

      Arbaoui A., Redshaw C., Hughes D. L.. Multinuclear alkylaluminum macrocyclic Schiff base complexes:influence of procatalyst structure on the ring opening polymerisation of ε-caprolactone[J]. Chem. Commun., 2008:4717-4719.  

    18. [18]

      Williams C. K., Brooks N. R., Hillmyer M. A., Tolman W. B.. Metalloenzyme inspired dizinc catalyst for the polymerization of lactide[J]. Chem. Commun., 2002:2132-2133.  

    19. [19]

      Kan C., Ma H.. Copolymerization of L-lactide and ε-caprolactone catalyzed by mono-and dinuclear salen aluminum complexes bearing bulky 6, 6'-dimethylbiphenyl-bridge:random and tapered copolymer[J]. RSC Adv., 2016,6(53):47402-47409. doi: 10.1039/C6RA07374C

    20. [20]

      Chen L., Li W., Yuan D., Zhang Y., Shen Q., Yao Y.. Syntheses of mononuclear and dinuclear aluminum complexes stabilized by Phenolato ligands and their applications in the polymerization of ε-caprolactone:a comparative study[J]. Inorg. Chem., 2015,54(10):4699-4708. doi: 10.1021/acs.inorgchem.5b00022

    21. [21]

      Wei Y., Wang S., Zhou S.. Aluminum alkyl complexes:synthesis, structure, and application in ROP of cyclic esters[J]. Dalton Trans., 2016,45(11):4471-4485. doi: 10.1039/C5DT04240B

    22. [22]

      Li W., Ouyang H., Chen L., Yuan D., Zhang Y., Yao Y.. A comparative study on dinuclear and mononuclear aluminum methyl complexes bearing piperidyl-phenolato ligands in ROP of epoxides[J]. Inorg. Chem., 2016,55(13):6520-6524. doi: 10.1021/acs.inorgchem.6b00639

    23. [23]

      Li L., Liu B., Liu D., Wu C., Li S., Liu B., Cui D.. Copolymerization of ε-caprolactone and L-lactide catalyzed by multinuclear aluminum complexes:an immortal approach[J]. Organometallics, 2014,33(22):6474-6480. doi: 10.1021/om5008264

    24. [24]

      Liu S., Motta A., Mouat A. R., Delferro M., Marks T. J.. Very large cooperative effects in heterobimetallic titanium-chromium catalysts for ethylene polymerization/copolymerization[J]. J. Am. Chem. Soc., 2014,136(29):10460-10469. doi: 10.1021/ja5046742

    25. [25]

      Liu S., Motta A., Delferro M., Marks , T. J.. Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for highly branched polyethylenes.[J]. J. Am. Chem. Soc., 2013,135(24):8830-8833. doi: 10.1021/ja4039505

    26. [26]

      Inoue S.. Immortal polymerization:the outset, development, and application[J]. J. Polym. Sci., Part A:Polym. Chem., 2000,38(16):2861-2871. doi: 10.1002/(ISSN)1099-0518

    27. [27]

      Cheung K. C., Wong W. L., So M. H., Zhou Z. Y., Yan S. C., Wong K. Y.. A dinuclear ruthenium catalyst with a confined cavity:selectivity in the addition of aliphatic carboxylic acids to phenylacetylene[J]. Chem. Commun., 2013,49(7):710-712. doi: 10.1039/C2CC38454J

    28. [28]

      Kendall J. K., Shechter H.. Intramolecular behaviors of anthryldicarbenic systems:dibenzo[b, f]pentalene and 1H, 5Hdicyclobuta[de, kl]anthracene[J]. J. Org. Chem., 2001,66(20):6643-6649. doi: 10.1021/jo010404p

    29. [29]

      Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2:a complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    30. [30]

      Sheldrick G. M.. A short story of SHELX[J]. Acta Cryst. A, 2008,64:112-122. doi: 10.1107/S0108767307043930

    31. [31]

      Sheldrick, G. M., "Shelxtl PC: an integrated system for solving, refining, and displaying crystal structures from diffraction data", Version 6. 014, Bruker AXS, Madison, WI, 2000.

    32. [32]

      Ulatowski F., Jurczak J.. Chiral recognition of carboxylates by a static library of thiourea receptors with amino acid arms[J]. J. Org. Chem., 2015,80(9):4235-4243. doi: 10.1021/acs.joc.5b00403

    33. [33]

      Kim Y. K., Lee H. N., Singh N. J., Choi H. J., Xue J. Y., Kim K. S., Yoon J., Hyun M. H.. Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids:opposite chiral selectivities from similar binding units[J]. J. Org. Chem., 2008,73(1):301-304. doi: 10.1021/jo7022813

    34. [34]

      Salata M. R., Marks T. J.. Catalyst nuclearity effects in olefin polymerization[J]. enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts. Macromolecules, 2009,42(6):1920-1933.

    35. [35]

      Han H. L., Liu Y., Liu J. Y., Nomura K., Li Y. S.. Synthesis of binuclear phenoxyimino organoaluminum complexes and their use as the catalyst precursors for efficient ring-opening polymerisation of ε-caprolactone[J]. Dalton Trans., 2013,42(34):12346-12353. doi: 10.1039/c3dt50264c

    36. [36]

      Zhang W., Wang Y., Sun W. H., Wang L., Redshaw C.. Dimethylaluminium aldiminophenolates:synthesis, characterization and ring-opening polymerization behavior towards lactides[J]. Dalton Trans., 2012,41(38):11587-11596. doi: 10.1039/c2dt31215h

    37. [37]

      Zhao W., Wang Y., Liu X., Chen X., Cui D., Chen E. Y. X.. Protic compound mediated living cross-chain-transfer polymerization of rac-lactide:synthesis of isotactic (crystalline)-heterotactic (amorphous) stereomultiblock polylactide[J]. Chem. Commun., 2012,48(51):6375-6377. doi: 10.1039/c2cc32680a

    38. [38]

      Zhao W., Cui D., Liu X., Chen X.. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study[J]. Macromolecules, 2010,43(16):6678-6684. doi: 10.1021/ma101202g

    39. [39]

      Helou M., Miserque O., Brusson J. M., Carpentier J. F., Guillaume S. M.. Ultraproductive, zinc-mediated, immortal ring-opening polymerization of trimethylene carbonate[J]. Chem. Eur. J., 2008,14(29):8772-8775. doi: 10.1002/chem.200801416

    40. [40]

      Liu J., Iwasa N., Nomura K.. Synthesis of Al complexes containing phenoxy-imine ligands and their use as the catalyst precursors for efficient living ring-opening polymerisation of ε-caprolactone[J]. Dalton Trans., 2008:3978-3988.

    41. [41]

      Liu S., Zhang J., Zuo W., Zhang W., Sun W. H., Ye H., Li Z.. Synthesis of aluminum complexes bearing 8-anilide-5, 6, 7-trihydroquinoline ligands:highly active catalyst precursors for ring-opening polymerization of cyclic esters[J]. Polymers, 2017,9(3). doi: 10.3390/polym9030083

    42. [42]

      Luo W., Shi T., Liu S., Zuo W., Li Z.. Well-designed unsymmetrical Salphen-Al complexes:synthesis, characterization, and ring-opening polymerization catalysis[J]. Organometallics, 2017,36(9):1736-1742. doi: 10.1021/acs.organomet.7b00106

  • 加载中
    1. [1]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    2. [2]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    5. [5]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    6. [6]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    14. [14]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    15. [15]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    16. [16]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    17. [17]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

Metrics
  • PDF Downloads(0)
  • Abstract views(788)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return